سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پاورپوینت الگوریتم های ژنتیک 27 ص.PPT

اختصاصی از سورنا فایل پاورپوینت الگوریتم های ژنتیک 27 ص.PPT دانلود با لینک مستقیم و پر سرعت .

 

دسته بندی : پاورپوینت 

نوع فایل:  ppt _ pptx

( قابلیت ویرایش )

 


 قسمتی از اسلاید متن پاورپوینت : 

 

تعداد اسلاید : 27 صفحه

1 الگوریتم های ژنتیک Instructor : Farhad M.Kazemi 2 الگوریتم ژنتیک الگوریتم ژنتیک روش یادگیری بر پایه تکامل بیولوژیک است. این روش در سال 1970 توسط John Holland معرفی گردید این روشها با نام Evolutionary Algorithms نیز خوانده میشوند.
3 ایده کلی یک GA برای حل یک مسئله مجموعه بسیار بزرگی از راه حلهای ممکن ار تولید میکند. هر یک از این راه حلها با استفاده از یک “ تابع تناسب” مورد ارزیابی قرار میگیرد. آنگاه تعدادی از بهترین راه حلها باعث تولید راه حلهای جدیدی میشوند.
که اینکار باعث تکامل راه حلها میگردد. بدین ترتیب فضای جستجو در جهتی تکامل پیدا میکند که به راه حل مطلوب برسد در صورت انتخاب صحیح پارامترها، این روش میتواند بسیار موثر عمل نماید.
4 فضای فرضیه الگوریتم ژنتیک بجای جستجوی فرضیه های general-to specific و یا simple to complex فرضیه ها ی جدید را با تغییر و ترکیب متوالی اجزا بهترین فرضیه های موجود بدست میاورد. در هرمرحله مجموعه ای از فرضیه ها که جمعیت (population) نامیده میشوند از طریق جایگزینی بخشی از جمعیت فعلی با فرزندانی که از بهترین فرضیه های موجود حاصل شده اند بدست میآید. 5 ویژگیها الگوریتم های ژنتیک در مسائلی که فضای جستجوی بزرگی داشته باشند میتواند بکار گرفته شود. همچنین در مسایلی با فضای فرضیه پیچیده که تاثیر اجرا آن در فرضیه کلی ناشناخته باشند میتوان از GA برای جستجو استفاده نمود. برای discrete optimizationبسیار مورد استفاده قرار میگیرد. الگوریتم های ژنتیک را میتوان براحتی بصورت موازی اجرا نمود از اینرو میتوان کامپیوترهای ارزان قیمت تری را بصورت موازی مورد استفاده قرار داد. امکان به تله افتادن این الگوریتم در مینیمم محلی کمتر از سایر روشهاست. از لحاظ محاسباتی پرهزینه هستند. تضمینی برای رسیدن به جواب بهینه وجود ندارد.
6 Parallelization of Genetic Programming در سال 1999 شرکت Genetic Programming Inc.
یک کامپیوتر موازی با 1000 گره هر یک شامل کامپیوتر های P2, 350 MHZ برای پیاده سازی روش های ژنتیک را مورد استفاده قرار داد. 7 کاربر دها کاربرد الگوریتم های ژنتیک بسیار زیاد میباشد optimization, automatic programming, machine learning, economics, operations research, ecology, studies of evolution and learning, and social systems 8 زیر شاخه های EA روش های EA به دو نوع مرتبط به هم ولی مجزا دسته بندی میشوند: Genetic Algorithms (GAs) در این روش راه حل یک مسئله بصورت یک bit string نشان داده میشود.
Genetic Programming (GP) این روش به تولید expression trees که در زبانهای برنامه نویسی مثل lisp مورد استفاده هستند میپردازد بدین ترتیب میتوان برنامه هائی ساخت که قابل اجرا باشند.
9 الگوریتم های ژنتیک روش متداول پیاده سازی الگوریتم ژنتیک بدین ترتیب است که: استخری از فرضیه ها که population نامیده میشود تولید وبطور متناوب با فرضیه های جدیدی جایگزین میگردد. در هر بار تکرارتمامی فرضیه ها با استفاده از یک تابع تناسب یا Fitness مورد ارزیابی قرار داده میشوند.
آنگاه تعدادی از بهترین فرضیه ها با استفاده از یک تابع احتمال انتخاب شده و جمعیت جدید را تشکیل میدهند. تعدادی از این فرضیه های انتخاب شده

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  توجه فرمایید.

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف فروشگاه پاورپوینت کمک به سیستم آموزشی و رفاه دانشجویان و علم آموزان میهن عزیزمان میباشد. 


 

دانلود فایل  پرداخت آنلاین 


دانلود با لینک مستقیم


پاورپوینت الگوریتم های ژنتیک 27 ص.PPT

دانلود درس طراحی الگوریتم ها

اختصاصی از سورنا فایل دانلود درس طراحی الگوریتم ها دانلود با لینک مستقیم و پر سرعت .

دانلود درس طراحی الگوریتم ها


دانلود درس طراحی الگوریتم ها

 

دسته بندی : پاورپوینت 

نوع فایل:  ppt _ pptx

( قابلیت ویرایش )

 


 قسمتی از محتوی متن پاورپوینت : 

 

تعداد اسلاید : 249 صفحه

درس طراحی الگوریتم ها(با شبه کد های c ++) فصل اول: کارایی ، تحلیل و مرتبه الگوریتم ها این کتاب در باره تکنیک های مربوط به حل مسائل است. تکنیک ، روش مورد استفاده در حل مسائل است. مسئله ، پرسشی است که به دنبال پاسخ آن هستیم. بکار بردن تکنیک منجر به روشی گام به گام (الگوریتم ) در حل یک مسئله می شود. منظورازسریع بودن یک الگوریتم، یعنی تحلیل آن از لحاظ زمان و حافظه.
نوشتن الگوریتم به زبان فارسی دو ایراد دارد: 1- نوشتن الگوریتم های پیچیده به این شیوه دشوار است. 2- مشخص نیست از توصیف فارسی الگوریتم چگونه می توان یک برنامه کامپیوتری ایجاد کرد. الگوریتم 1-1: جست و جوی ترتیبی Void seqsearch ( int n const keytype S[ ] keytype x, index& location) { location = 1; while (location <= n && S[location] ! = x) location++; if (location > n ) location = 0 ; الگوریتم 2-1:محاسبه مجموع عناصر آرایه number sum (int n , const number s[ ]) { index i; number result; result = 0; for (i = 1; i <= n; i++) result = result + s[i]; return result; } الگوریتم 3-1:مرتب سازی تعویضی مسئله: n کلید را به ترتیب غیر نزولی مرتب سازی کنید. void exchangesort (int n , keytype S[ ]) { index i,j; for (i = 1 ; i<= n -1; i++) for (j = i +1; j <= n ; j++) if ( S[j] < S[i]) exchange S[i] and S[j]; } الگوریتم 4-1:ضرب ماتریس ها void matrixmult (int n const number A [ ] [ ], const number B [ ] [ ], number C [ ] [ ], { index i , j, k; for ( i = 1; I <= n ; i++) for (i = 1; j <= n ; j++)} C [i] [j] = 0; for (k = 1 ; k <= n ; k++) C [i][j] = C[i] [j] + A [i][k] * B [k][j] }} 2- 1اهمیت ساخت الگوریتم های کارآمد جست و جوی دودویی معمولا بسیار سریع تر ازجست و جوی ترتیبی است. تعداد مقایسه های انجام شده توسط جست و جوی دودویی برابر با lg n + 1 است . الگوریتم 1-1: جست و جوی ترتیبی Void seqsearch ( int n const keytype S[ ] keytype x, index& location) { location = 1; while (location <= n && S[location] ! = x) location++; if (location > n ) location = 0 ; الگوریتم 5-1: جست و جوی دودویی Void binsearch (int n, const keytype S[ ], keytype x, index& location) { index low, high, mid; low = 1 ; high = n; location = 0; while (low <= high && location = = 0) { mid = Į(low + high)/2⌡; if ( x = = S [mi

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  توجه فرمایید.

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف فروشگاه پاورپوینت کمک به سیستم آموزشی و رفاه دانشجویان و علم آموزان میهن عزیزمان میباشد. 



دانلود فایل  پرداخت آنلاین 


دانلود با لینک مستقیم


دانلود درس طراحی الگوریتم ها

تحقیق درباره بررسی عملکرد الگوریتم بهینه سازی توده ذرات (PSO )

اختصاصی از سورنا فایل تحقیق درباره بررسی عملکرد الگوریتم بهینه سازی توده ذرات (PSO ) دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره بررسی عملکرد الگوریتم بهینه سازی توده ذرات (PSO )


تحقیق درباره بررسی عملکرد الگوریتم بهینه سازی توده ذرات (PSO )

فرمت فایل :word (لینک دانلود پایین صفحه) تعداد صفحات 11 صفحه

 الگوریتم [1]PSO یک الگوریتم جستجوی اجتماعی است که از روی رفتار اجتماعی دسته‌های پرندگان مدل شده است. در ابتدا این الگوریتم به منظور کشف الگوهای حاکم بر پرواز همزمان پرندگان و تغییر ناگهانی مسیر آنها و تغییر شکل بهینه‌ی دسته به کار گرفته شد . در PSO، ذرات[2] در فضای جستجو جاری می‌شوند. تغییر مکان  ذرات در فضای جستجو تحت تأثیر تجربه و دانش خودشان و همسایگانشان است. بنابراین موقعیت دیگر توده[3] ذرات روی چگونگی جستجوی یک ذره اثر می‌گذارد . نتیجه‌ی مدل‌سازی این رفتار اجتماعی فرایند جستجویی است که ذرات به سمت نواحی موفق میل می‌کنند


[1] -Particle Swarm Optimization

[2] -Particle

[3] -Swarm

 


دانلود با لینک مستقیم


تحقیق درباره بررسی عملکرد الگوریتم بهینه سازی توده ذرات (PSO )

تحقیق در مورد الگوریتم بانکدار

اختصاصی از سورنا فایل تحقیق در مورد الگوریتم بانکدار دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد الگوریتم بانکدار


تحقیق در مورد الگوریتم بانکدار

فرمت فایل :word (لینک دانلود پایین صفحه) تعداد صفحات 11صفحه

 

 

این صفحه باعث اجتناب از بن بست در ارتباط است. برای گرد کردن به نزدیک ترین حالت، به بخش گردکردن بانکدار مراجعه کنید.

الگوریتم بانکدار ، الگوریتم اجتناب از بن بست و مقدار منبع می باشد که توسط Edsger Dijkstra  ارائه شده است. این الگوریتم توسط شبیه سازی حداکثر مقدار ممکن از پیش تعیین شده منابع، ایمنی منابع را مورد آزمایش قرار می دهد و سپس قبل از تصمیم در مورد اینکه آیا این مقدار اختصاص یافته مجاز به ارائه است یا نه ف یک وضعیت ایمنی را به منظور آزمایش شرایط بن بست موجود بری کلیه فعالیتهای معلق ، ایجاد می نماید.

انتخاب نام برای الگوریتم:

این الگوریتم در قرایند طراحی برای سیستم عامل THE ارائه شده بود که البته در EWD108 به طور مفصل به زبان آلمانی توضیح داده شده است. این نام از مقایسه آن با شیوه ای است که بانکداران برای محدودیتهای بازپرداختی استفاده می کنند.

 

الگوریتم

          الگوریتم بانکدار هر زمانی که فرایندی نیاز به منابعی داشته باشد، توسط سیستم عامل اجرا می گردد. این الگوریتم، به وسیله ردکردن یا به تعویق انداختن درخواست، از بن بست جلوگیری می کند البته اگر درخواست تعیین کننده این باشد که قبول درخواست ممکن است سیستم را در وضعیت ناامن قرار دهد( شرایطی که بن بست می توانند در آن رخ دهد ).

 

منابع

          به منظور به کارگیری الگوریتم بانکدار ، سه چیز لازم به ذکر است:

  • هر فرایند چقدر از هر منبع می تواند نیاز داشته باشد.
  • هر فرایند چقدر از هر منبع را دردست دارد.
  • هر سیستم چقدر از هر منبع را موجود دارد.

برخی از منابع مه در سیستم های واقعی یافت می شوند عبارتند از ک حافظه ،سمافورها (Semaphores) دسترسی مقدماتی ( interface access).

مثال:

با فرض اینکه سیستمی 4 نوع منبع را مشخص می کند (A,B,C and D) مثالی می آوریم از اینکه این منابع چقدر می توانند تقسیم شوند و یا بسط یابند.

توجه داشته باشد که این مثال سیستم را در لحظه ای قبل از رسیدن درخواستی برای منابع ، نشان می دهد. همچنین نوع و تعداد منابع هم خلاصه شده اند. به عنوان مثال ، سیستم های واقعی با مقادیر وسیعتری از هر منبع سرو کار دارند.

Available system resources:

A B C D

3 1 1 2

:Processes   ( currently   allocated   resources )

         A  B  C  D

P1   1   2  2   1

P2   1   0   3   3

P3   1   1   1   0

Processes   ( maximum   resources)

       A  B  C  D

P1   3   3   2   2

P2   1   2   3   4

P3   1   1   5   0

 

 

وضعیت های امن و ناامن:

          شرایطی مثل مثال بالا در صورتی امن در نظر گرفته می شود که امکان خاتمه یافتن برای همه فرایندها وجود داشته باشد . از آنجایی که سیستم نمی تواند تشخیص دهد که چه زمانی فرایندی به اتمام خواهد رسید یا تا قبل از خاتمه چه تعداد منبع نیاز خواهد داشت ،  فرض را بر این می گذارد که تمامی فرایندها سعی به بدست آوردن حداکثر منابعشان دارند که خیلی سریع هم به اتمام خواهد رسید.

این در بسیاری از موارد فرضیه مناسبی به نظر می رسد چرا که سیستم مشخصاً با اینکه هر فرایندی چه مدت اجرا خواهد شد ، در ارتباط با نیست (حداقل نه از نظر اجتناب با بن بست) . همچنین اگر فرایندی بدون بدست آوردن حداکثر منابعش خاتمه یابد ، تنها آن فرایند را روی سیستم تسهیل می کند.

با ارائه آن فرضیه، الگوریتم با سعی برای یافتن مجموعه فرضی از درخواست ها توسط فرایندها که به هر کدام این فرصت رابرای بدست آوردن حداکثر منابعشان و سپس خاتمه یافتن را می دهد، ( با برگشت دادن منابعشان به سیستم) تعیین می کند که آیا یک وضعیت امن است یا خیر.


دانلود با لینک مستقیم


تحقیق در مورد الگوریتم بانکدار

پاورپوینت الگوریتم های ژنتیک 27 ص.PPT

اختصاصی از سورنا فایل پاورپوینت الگوریتم های ژنتیک 27 ص.PPT دانلود با لینک مستقیم و پر سرعت .

پاورپوینت الگوریتم های ژنتیک 27 ص.PPT


پاورپوینت الگوریتم های ژنتیک 27 ص.PPT

 

دسته بندی : پاورپوینت 

نوع فایل:  ppt _ pptx

( قابلیت ویرایش )

 


 قسمتی از اسلاید پاورپوینت : 

 

تعداد اسلاید : 27 صفحه

1 الگوریتم های ژنتیک Instructor : Farhad M.Kazemi 2 الگوریتم ژنتیک الگوریتم ژنتیک روش یادگیری بر پایه تکامل بیولوژیک است. این روش در سال 1970 توسط John Holland معرفی گردید این روشها با نام Evolutionary Algorithms نیز خوانده میشوند.
3 ایده کلی یک GA برای حل یک مسئله مجموعه بسیار بزرگی از راه حلهای ممکن ار تولید میکند. هر یک از این راه حلها با استفاده از یک “ تابع تناسب” مورد ارزیابی قرار میگیرد. آنگاه تعدادی از بهترین راه حلها باعث تولید راه حلهای جدیدی میشوند.
که اینکار باعث تکامل راه حلها میگردد. بدین ترتیب فضای جستجو در جهتی تکامل پیدا میکند که به راه حل مطلوب برسد در صورت انتخاب صحیح پارامترها، این روش میتواند بسیار موثر عمل نماید.
4 فضای فرضیه الگوریتم ژنتیک بجای جستجوی فرضیه های general-to specific و یا simple to complex فرضیه ها ی جدید را با تغییر و ترکیب متوالی اجزا بهترین فرضیه های موجود بدست میاورد. در هرمرحله مجموعه ای از فرضیه ها که جمعیت (population) نامیده میشوند از طریق جایگزینی بخشی از جمعیت فعلی با فرزندانی که از بهترین فرضیه های موجود حاصل شده اند بدست میآید. 5 ویژگیها الگوریتم های ژنتیک در مسائلی که فضای جستجوی بزرگی داشته باشند میتواند بکار گرفته شود. همچنین در مسایلی با فضای فرضیه پیچیده که تاثیر اجرا آن در فرضیه کلی ناشناخته باشند میتوان از GA برای جستجو استفاده نمود. برای discrete optimizationبسیار مورد استفاده قرار میگیرد. الگوریتم های ژنتیک را میتوان براحتی بصورت موازی اجرا نمود از اینرو میتوان کامپیوترهای ارزان قیمت تری را بصورت موازی مورد استفاده قرار داد. امکان به تله افتادن این الگوریتم در مینیمم محلی کمتر از سایر روشهاست. از لحاظ محاسباتی پرهزینه هستند. تضمینی برای رسیدن به جواب بهینه وجود ندارد.
6 Parallelization of Genetic Programming در سال 1999 شرکت Genetic Programming Inc.
یک کامپیوتر موازی با 1000 گره هر یک شامل کامپیوتر های P2, 350 MHZ برای پیاده سازی روش های ژنتیک را مورد استفاده قرار داد. 7 کاربر دها کاربرد الگوریتم های ژنتیک بسیار زیاد میباشد optimization, automatic programming, machine learning, economics, operations research, ecology, studies of evolution and learning, and social systems 8 زیر شاخه های EA روش های EA به دو نوع مرتبط به هم ولی مجزا دسته بندی میشوند: Genetic Algorithms (GAs) در این روش راه حل یک مسئله بصورت یک bit string نشان داده میشود.
Genetic Programming (GP) این روش به تولید expression trees که در زبانهای برنامه نویسی مثل lisp مورد استفاده هستند میپردازد بدین ترتیب میتوان برنامه هائی ساخت که قابل اجرا باشند.
9 الگوریتم های ژنتیک روش متداول پیاده سازی الگوریتم ژنتیک بدین ترتیب است که: استخری از فرضیه ها که population نامیده میشود تولید وبطور متناوب با فرضیه های جدیدی جایگزین میگردد. در هر بار تکرارتمامی فرضیه ها با استفاده از یک تابع تناسب یا Fitness مورد ارزیابی قرار داده میشوند.
آنگاه تعدادی از بهترین فرضیه ها با استفاده از یک تابع احتمال انتخاب شده و جمعیت جدید را تشکیل میدهند. تعدادی از این فرضیه های انتخاب شده

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  توجه فرمایید.

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف فروشگاه پاورپوینت کمک به سیستم آموزشی و یادگیری و علم آموزی میباشد. 

 


دانلود فایل  پرداخت آنلاین 


دانلود با لینک مستقیم


پاورپوینت الگوریتم های ژنتیک 27 ص.PPT