سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پایان نامه برق درمورد منابع انرژی فسیلی و هسته ای

اختصاصی از سورنا فایل دانلود پایان نامه برق درمورد منابع انرژی فسیلی و هسته ای دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه برق درمورد منابع انرژی فسیلی و هسته ای


دانلود پایان نامه برق درمورد منابع انرژی فسیلی و هسته ای

منابع انرژی فسیلی و هسته ای در رشته برق

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:90

چکیده :

استفاده از منابع انرژی فسیلی و هسته ای، مستلزم هزینه زیاد و افزایش آلودگی محیط زیست و عوارض مخرب ناشی از آن است، از این رو با بروز پدیده بحران انرژی در دنیا و از طرف دیگر پیشرفت تکنولوژی تبدیل انرژی باد، به انرژی الکتریکی که به کاهش قیمت آنها منجر شده، استفاده از انرژی باد اجتناب ناپذیر شده است. سیستم های مبدل انرژی باد، به انرژی الکتریکی از سال 1975 به شکل تجاری و در سطح وسیع در دنیا مورد استفاده قرار گرفته اند. هم اکنون با پیشرفت تکنولوژی میکروکامپیوترها و نیمه هادیهای قدرت امکان استفاده از سیستم کنترلی مدرن و در نتیجه تولید قدرت الکتریکی با کیفیت بالا از نیروی باد ایجاد شده است. تجربه نصب و راه اندازی نیروگاههای بادی در کشورهای صنعتی، به خصوص آمریکا و دانمارک نشان داده است که هزینه این سیستم ها قابل مقایسه با هزینه روش های سنتی و متداول تولید انرژی الکتریکی می باشد.

تامین انرژی الکتریکی برای بارهای شبکه با کیفیت بالا و تولید وقفه نیروی برق هدف اصلی یک سیستم قدرت می باشد. برای بالا بردن کیفیت انرژی الکتریکی نیاز است. کمیت های مختلف سیستم قدرت مانند راه اندازی از مدار خارج نمودن، بهره برداری در شرایط توان ثابت و.... کنترل شود. با توجه به ماهیت تغییرات سرعت باد در زمان های مختلف ایجاد شرایط کنترل برای سیستم های قدرت شامل مبدل های انرژی باد به الکتریکی حائز اهمیت می گردد. اجزاء مختلف یک سیستم قدرت بادی شامل: توربین بادی، ژنراتور، کنترل کننده زاویه گام پره و سیستم تحریک می باشد. که هر یک از این اجزاء انواع مختلف داشته و در مدل های مختلف براساس نیاز ساخته می شوند. لذا با توجه به موقعیت جغرافیایی ایران و اهمیت انرژی‌های تجدیدپذیر به این موضوع پرداخته می شود.

باد رایگان است بشر از عهد باستان این نکته را به خوبی دریافته است و آسیاب بادی را ساخته است تا آب چاهها را بیرون بکشد و غلات را آرد کند. امروزه آسیابهای بادی دیگر منسوخ شده اند و جای خود را به مولدهای بادی داده اند که الکتریسته تولید می کنند. بهترین جا برای تاسیس مولدهای بادی سواحل دریا و تپه ها هستند. در این نقاط باد شدیدتر و منظم تر از نقاط دیگر می‌وزد. (برای تولید الکتریسته سرعت باد باید به طور متوسط 5 متر بر ثانیه، یعنی 18 کیلومتر در ساعت باشد.) اما باد این عیب بزرگ را دارد که فقط بعضی روزها و بعضی ساعات می وزد. اگر فقط به انرژی باد اتکا کنیم، به سرعت دچار کمبود الکتریسته
می شویم. پس راه حل چیست؟ راه حل این است که با استفاده از باتریها الکتریسته ای را که در ساعات بادخیز تولید شده است، ذخیره کنیم. راه دوم این است که مولد بادی را با موتوری که با سوخت کار می کند همراه سازیم. و در واقع یک گروه الکترون بوجود می آوریم. به این ترتیب می توانیم وقتی که باد نیست از الکتریسته ای که ماشین دوم تولید می کند استفاده کنیم. در حال حاضر در بسیاری از کشورهای در حال توسعه یا نقاط دور افتاده ای که برق رسانی به آنها ممکن نیست ازجمله در آرژانتین، استرالیا، آفریقای جنوبی ... موادهای بادی می توانند نیاز یک مزرعه، چند خانه یا روستا را به برق تامین کنند. در اوایل قرن 14 میلادی بهره برداری گسترده از آسیابهای بادی در اروپا رایج گردید. اروپائیان بعدها روتور آسیابها را به بالای برجی انتقال داده اند که از چندین طبقه تشکیل می شود. نکته حائز اهمیت درباره آسیابهای مذکور آنست که پره ها بطور دستی در جهت باد قرار داده می شوند و این امر به کمک اهرم بزرگی در پشت آسیاب صورت می گرفت. بهینه سازی انرژی خروجی و حفاظت آسیاب در برابر آسیب دیدگی ناشی از بادهای شدید با جمع کردن پره های آن صورت می گرفت. نخستین مولدهای بزرگ به منظور تولید الکتریسته سال در اوهایو توسط چارلز براش ساخته شد. در سال 1888 ابداع انواع مولدهای بادی در مقیاس وسیع در 1930 در روسیه با ساخت ژنراتور بادی 100 کیلو واتی آغاز شد. طراحی روتورهای پیشرفته با محور عمودی در فرانسه توسط داریوس در دهه 1920 آغاز شد. از میان طرحهای پیشنهادی داریوس مهمترین طرح، روتوری است با پره های ایرفویل و انحنا دار که از بالا و پایین به یک محور عمودی متصل می شوند. در این زمینه، ابداعات دیگری صورت نگرفت و این طرح در سالهای اخیر به نام توربین داریوس مورد توجه قرار گرفته است. توسعه صنعت توربین های بادی، بسیار سریع بوده و در حال پیشرفت است. از ابتدای دهه 1980 تاکنون ظرفیت متوسط توربین بادی از 15 کیلو وات تا 8 مگا وات ارتقاء یافته است. مجموع ظرفیت نصب شده توربین های بادی در جهان به بیش از 25000 مگا وات بالغ می گردد. بنا بر محاسبات انجام شده، از باد در جهان
می توان 105-Ej (هر Ej ژول) برق گرفت و آنچه در عمل بدست می آید. 110Ej است و پیش بینی شده است تا 2020 میلادی 10 درصد از برق کل جهان از انرژی باد تولید خواهد شد. این صنعت همچنین باعث ایجاد 7/1 میلیون شغل می شود.

2-1- تاریخچه انرژی باد در جهان

انرژی باد از انواع قدیمی انرژی است که از بدو پیدایش کره زمین در آن وجود داشته و با پیشرفت جوامع انسانی مورد استفاده قرار گرفته است. کهن ترین دستگاههای مبدل باد در خاورمیانه، برای تهویه منازل بکار رفت که هنوز هم در بعضی شهرهای کویری ایران نظیر یزد بنام بادگیر از آن استفاده می شود. اولین توربین های بادی یا مبدل های انرژی باد به انرژی جنبشی در ایران شکل گرفت و کمی بعد در عصر حمورابی پادشاه بابل در عراق نیز گسترش یافت. نمونه های اولیه این توربین ها از محور عمودی استفاده
می کردند و دارای 4 پره بودند.

استفاده اصلی این توربین ها در آرد کردن غلات بود در 3 قرن قبل از میلاد، مصریها نمونه ای از توربین با محور افقی و 4 پره را ابداع کردند و بوسیله آن، هوای فشرده جهت ساختن ارگ در مراسم مذهبی را تامین کردند. آسیاب بادی در قرون وسطی در ایتالیا، پرتغال و اسپانیلا ظاهر شد و کمی بعد در انگلستان، هلند و آلمان نیز بکار برده شد. این ماشین ها می خواستند آب را به ارتفاع 5 متر پمپ نمایند. حتی از آن برای استخراج روغن از دانه های روغنی نیز استفاده کردند و بعدا انرژی باد علاوه بر خشکی در دریا نیز برای پیشبرد کشتی ها استفاده شد.

3-1- تلاش برای تسخیر دریا

در اروپا مولدهای بادی بیشتر برای تولید الکتریسته «پاک» که در شبکه های سراسری تزریق می شود مورد استفاده قرار می گیرند. تاسیس مولدهای بادی در خشکی گاهی سبب اعتراض هایی می شود (حمایت از پرندگان و محیط زیست) برای اجتناب از این گونه دردسرها، بهتر است که پیش از نصب مولد های بادی مطالعات لازم را انجام دهیم.

همچنین بایستی موقعیت نصب مولدهای بادی، در معرض راه پرندگان مهاجر قرار نگیرد. حال که نصب این مولدها در خشکی مشکلاتی دارد، پژوهشگران متوجه دریاها شدند. مثلا کشور دانمارک با نصب مولدهای بسیار عظیم در مناطق کم عمق سواحل خود نمونه بسیاری خوبی را ارائه داده است (دکل این مولدهای بادی 90 متر و طول متغیرهایش 40متر است.) آلمان، بلژیک، ایرلند هم به پیروی از دانمارک قصد دارند که با ایجاد پارک های بزرگ و نصب ژنراتورهای بادی در آنها به اندازه نیروگاه های معمولی الکتریسته تولید کنند. امروزه مولدهای بادی را در مناطق کم عمق دریاها کار می گذارند.

4-1- وضعیت کنونی بهره برداری از انرژی باد در جهان

نیروگاههای بادی در سراسر جهان به سرعت در حال گسترش می باشند. به طوریکه انرژی باد در میان دیگر منابع و گزینه های انرژی عنوان سریع الرشدترین صنعت را به خود اختصاص داده اند. نرخ رشد این صنعت در سال 2001 میلادی سالانه 35 درصد و در سال 2002 میلادی سالانه 28 درصد گزارش شده است. در پایان سال 2002 میلادی کل ظرفیت نصب شده جهان به 22400 مگاوات رسیده که در این میان آلمان، اسپانیا، آمریکا، دانمارک و هند سهم بیشتری دارند. تا پایان 2002 میلادی این 5 کشور روی هم 26000 مگا وات یعنی 84 درصد از ظرفیت نصب شده در جهان را در اختیار داشته اند.

کل سرمایه در گردش صنعت انرژی باد در سال 2002 میلادی 7 میلیارد یورو بوده است. هر کیلو وات برق 1000 دلار هزینه دارد که 750 دلار آن به هزینه تجهیزات و مابقی به هزینه های آماده کردن سایت، نصب، راه اندازی و نگهداری مربوط می شود. در چند سال اخیر با بزرگ شدن سایز، توربین های تجاری، قیمت سرمایه گذاری آنها کاهش یافته است. صنعت انرژی باد منافع اقتصادی و اجتماعی مختلفی دارد که مهمترین آنها عبارتند از:

1-4-1 نداشتن هزینه اجتماعی:

این هزینه ها در تمام گزینه های متعارف انرژی (مانند منابع فسیلی) وجود دارند، اما با وجود هزینه های قابل توجه در بررسی های اقتصادی لحاظ نمی شود. انجمن انرژی باد در جهان (W.W.E.A) هزینه ها را به کوه یخی تشبیه کرده است. که حجم عظیم آن زیر آب است! کاهش اتکا به منابع انرژی وارداتی: در کشورهایی مثل ایران که می توان به این موضوع از جنبه افزایش صادرات نفت نگاه کرد.

2-4-1 اثرات زیست محیطی:

در جوامع بشری توسعه با بکار گیری انرژی بیشتر، میسر می گردد و بدین ترتیب انسان خصوصیات فیزیکی، شیمیایی، بیولوژیکی اجتماعی و سنتی محیط زیست و منطقه ای نقش مهمی را به عهده دارد و کسب اطلاع از میزان اثر بخشی انواع مختلف انرژیهای مورد استفاده بر سلامت محیط زیست و موجودات زنده، وضع مقررات و استانداردهای زیست محیطی جهت کاهش آثار زیانبار همچنین استفاده از تکنولوژی و فن آوری مناسب جهت کنترل آلودگی و از همه بهتر جایگزینی انرژی تجدید شوند و پاکیزه به جای انرژی های آلاینده و تجدید ناشونده شاید بتوان آینده ای پاک را برای انسانها به ارمغان آورد.

با پیدایش نوآوریهایی در زمینه تولید انرژی مناسب برای هر کار خاص می توان مانع از ضایعات زیست محیطی و آلودگی هوا و ... شد. احتراق سوختهای فسیلی موجب ورود حجم عظیمی از اکسیدهای سولفور، نیتروژن، مونوکسیدکربن و دی اکسید کربن در هوا می شود. میزان انتشار آلاینده ها فوق به ترتیب به نوع سوخت و همچنین مکانیزم های بکار گرفته شده در کنترل آلودگی بستگی دارد. آلودگی هوا می تواند به شکل مه- دود، باران اسیدی و ذرات معلق پدیدار گردد. واکنش های هیدروکربن ها و اکسیدهای نیتروژن در حضور تشعشعات فرابنفش موجب تولید ترکیبات سمی می گردد که در نهایت سلامتی و حیات انسان، جانوران و به طور کلی اکوسیستم را در معرض خطر قرار خواهد داد.

3-4-1- اثرات گلخانه ای

از بعد دیگر سوختهای فسیلی موجب بالا رفتن درجه حرارت اتمسفر و افزایش میزان در دراز مدت شاهد افزایش درجه حرارت کره زمین، ذوب یخهای قطبی، بالا آمدن سطح آبها، به زیر آب رفتن مناطق ساحلی خواهیم بود. چنانچه گفته شد در دهه های اخیر همگام با صنعتی شدن جوامع پیشرفت های سریع تکنولوژی به علت استفاده بیش از حد از منابع انرژی تجدید ناپذیر (سوختهای فسیلی)، بشر به فکر دستیابی به منابع بهتر و مطلوبتر انرژی افتاده است. در این بخش ما به انرژی تجدید پذیر باد می پردازیم.

5-1 اهمیت و لزوم بکارگیری انرژی باد از بعد اقتصادی

بازارانرژی یک بازار رقابتی است که در آن تولید برق در نیروگاههای بادی در مقایسه با نیروگاه های سوختهای فسیلی برترهای نوینی را پیش روی کاربران قرار داده است. از برتریهای نیروگاه بادی اینست که در طول مدت زمان، عمر خود، سالهای زیادی را بدون نیاز به هزینه سوخت، تولید خواهد کرد. در حالیکه هزینه دیگر منابع تولید انرژی در طول این سالها افزایش خواهند یافت. فعالیت های گسترده بسیاری از کشورهای جهان برای تولید الکتریسته از انرژی باد، سرمشقی برای دیگر کشورهایی است که در این زمینه راه درازی را در پیش دارند. بسیاری از مناطق اقتصادی در حال رشد در منطقه آسیا واقع شده اند. و اقتصاد رو به رشد کشورهای آسیایی از جمله ایران باعث شده تا این کشورها بیش از پیش به تولید الکتریسته احساس نیاز کرده و اقدام به تولید الکتریسته از منابع غیر فسیلی کند. افزون بر این موارد؛ نبود شبکه برق سراسری در بسیاری از بخش های روستایی نیز مهر تاییدی بر سیستم های تولید انرژی زده است. پس در خصوص دورنمای آینده اقتصادی استفاده از انرژی باد در ایران می بایست گفت استفاده از این انرژی موجب صرفه جویی فرآورده های نفتی به عنوان سوخت می شود. صرفه جویی حاصل در درجه اول موجب حفظ فرآورده های نفتی گشته که امکان صادرات و مهم تر اینکه تبدیل آن به مشتقات بسیار زیاد پتروشیمی با ارزش افزوده بالا را فراهم می سازد. در درجه دوم تولید الکتریسیته از این انرزی فاقد هر گونه آلودگی زیست محیطی بوده که همین عامل کمک شایانی به حفظ طبیعت سالم محیط زیست بشری کرده و در نتیجه مسیر برای نیل به توسعه پایدار اقتصادی اجتماعی فراهم می گردد. گسترش نیروگاه های بادی در راستای کاهش بهای تمام شده برق تولیدی افزایش چشم گیری نشان می دهد. به گونه ای که بهای هر کیلووات ساعت برق تولیدی از 40 سنت در سال 1990 به حدود 6 سنت در سال 2002 رسیده است. عدم مصرف سوخت، هزینه کم راهبری، تعمیر و نگهداری و آلوده نکردن محیط زیست از مزایای نیروگاه های بادی است. لازم به ذکر است به طور متوسط برای هر کیلووات ساعت برق تولیدی نیروگاه بادی حدودا 28/0 متر مکعب گاز طبیعی با آهنگ جهانی 4 سنت بر متر مکعب صرفه جویی می شود.

بهره برداری از انرژی باد در تولید برق، به ویژه ظرفیت های چند مگاواتی تنها روش اقتصادی تولید در مقایسه با دیگر روش های تولیدی، مبتنی بر انرژی های بازیافت پذیر( خورشیدی، بیوماس، زمین گرمایی، امواج و سلول ساختی) است. لازم به ذکر است افزایش سهم انرژی های بازیافت پذیر در تولید توان الکتریکی، از سیاست های راهبردی میان مدت و بلند مدت بسیاری از کشورهای جهان است. گسترش نیروگاه های بادی در بسیاری از کشورها، نیازمند حمایت های مستقیم و غیر مستقیم دولتی است. در ایران نیز علی رقم این که مشاهده می شود با در نظر گرفتن هزینه های خصوصی نیروگاه های بادی و فسیلی، توسعه نیروگاه های بادی برای تولید برق هم اکنون کاملا اقتصادی نیست و در حال اقتصادی شدن است، ولی اگر هزینه های اجتماعی نیروگاه های فسیلی که در برگیرنده اثرات منفی است مبنای مقایسه قرار گیرد هزینه تولید در مولدهای بادی کمتر از فسیلی خواهد بود و برق حاصل از آن می تواند به عنوان یک انرژی پایدار در توسعه پایدار اقتصادی- اجتماعی کشور مورد استفاده قرار گیرد. استفاده از انرژی باد در ایران علاوه بر عمران و آبادی موجب ایجاد مشاغل جدید شده و بالاخره با بومی سازی فناوری انرژی باد اقتصاد کشور رشد بیشتری خواهند یافت. طبق بررسی های اینترنتی قلم سبز ایران: با تبدیل نیروگاه های گازی به بادی، سالانه 805 هزار مترمکعب گاز صرفه جویی می شود. بررسی های سازمان انرژی های نو نشان می دهد یک توربین بادی با ظرفیت 660 کیلووات، توانایی تولید 2 میلیون و 300 هزار کیلووات ساعت انرژی را در سال داراست. با جایگزین کردن توربین های بادی، سالیانه یک هزار و 140 تن در میزان آلاینده ها کاهش ایجاد می شود. این گزارش حاکی است، قیمت هر کیلووات ساعت برق تولیدی توسط نیروگاه بادی 308 تا 440 ریال است و این در حالی است که با در نظر گرفتن قیمت واقعی سوخت، قیمت واقعی هر کیلووات ساعت برق تولیدی نیروگاه گازی 510 ریال است. به دلیل پائین بودن دستوری قیمت گاز طبیعی در ایران و پرداخت یارانه ای گزاف به این حاصل انرژی، قیت تمام شده برق تولیدی با استفاده از گاز طبیعی یارانه ای به 150 ریال در هر کیلووات میرسد. واقعی نبودن قیمت ها سبب شده است سرمایه گذاری برای تبذیل نیروگاه های گازی به بادی فاقد صرفه اقتصادی باشد. یکی از مواردی که در دیدگاه اقتصاد انرژی حائز اهمیت است این است که تامین برق از طریق شبکه های توزیع به مناطق دورافتاده پرهزینه و گران است. در این بین مناطق جزیره ای و ساحلی که از شبکه اصلی دور بوده و در آنها میزان سرعت وزش باد مناسب باشد استفاده از توربین های بادی به عنوان محرک مکانیکی ژنراتورهای الکنریکی اهمیت ویژه ای یافته است. طبیعت غیر دائمی و سرعت متغیر باد ، تغییرات قدرت خروجی ژنراتور را به دنبال خواهد داشت. لذا این امر کاربرد این سیستم را برای مصرف کننده ها مشکل می سازد.

6-1 بحران انرژی

امروزه استفاده از انرژی های الکتریکی جهت تامین تقاضای مصرف کننده ها اهمیت شایانی یافته است به گونه ای که عرضه و تقاضای انرژی در جهان به صورت یکی از مهم ترین مسائل روز درآمده است. با توجه به این که انرزی های فسیلی از جمله نفت و گاز و زغال سنگ مسائل و مشکلات متعددی را دارند. لذا چرخ تمدن بشری که بستگی مستقیمی به انرژی دارد با مشکل روبرو خواهد شد. این امر سبب گردیده که کشورهای توسعه یافته صنعتی با جدیت هر چه تمام تر جهت استفاده از انرژی های موجود در طبیعت اقدام کنند. نظر به این که دانشمندان و محققین از نایابی سوخت های فسیلی در اوایل قرن 21 خبر می دهند و ذخایر نفتی تا چند دهه ی دیگر بیشتر باقی نخواهند ماند، قبل از فرا رسیدن بحران انرژی لازم است که پژوهشگران به بررسی و تحقیق در خصوص استفاده از انرژی های زوال ناپذیر یا تجدید شونده مانند باد بپردازند. وابستگی سیستم های تیدبل انرژی سوخت های فسیلی مانند نیروگاه های حرارتی به مواد خام انرزی زا مانند نفت و یا گاز طبیعی بسیار روشن است. در حالی که در سال های آتی این ذخایر یا رو به پایان می نهند و یا استخراج آنها با روش های کنونی غیر اقتصادی خواهد بود. ونهایتا این مه موضوع توسعه پایدار به عنوان یک محور اساسی فعالیت های اقتصادی نیز در این ارتباط قابل دقت و بررسی می باشد. توسعه پایدار به این معنا که استفاده از منابع طبیعی از جمله انرژی به نحوی باشد که امکان بهره برداری برای نسل های آینده وجود داسته باشد.

استفاده از انرژی باد

با توجه به این که افزایش سرعت باد موجب چرخش سریعتر توربین می شود. (توربین با سرعت متغیر)، از بادهای با سرعت بالا می توان قدرت بیشتری گرفت. این موضوع منتج به کارایی بیشتر ماشین شده، همانطور که با نیروی اعمالی روی ماشین آلات در این سرعت های بالا کاهش یافته است. این ماشین آلات نیز هم ارزان و هم مطمئن تر می شوند. هم چنین این مسئله موجب برتری توربین های فعلی می باشد. این توربین ها با تولید انرژی 4 برابر تنها دارای هزینه 5/2 برابر هستند.

انرژی باد به گونه ای فزاینده و به دلایل عدیده، جدا از هزینه های رقابتی جدیدش، مورد توجه عموم قرار گرفته است. توربین های بادی می توانند انرژی حقیقی و مگاوات را که در افزایش کارایی انتقال و تثبیت ولتاژ مفید است، تولید کنند. ماهیت آنچه که به وسیله منبع باد توزیع می شود، موجب نزدیکتر شدن مولدها به مراکز مصرف شده، تلفات ناشی از انتقال انرژی از بین می رود. ماهیت مدولار نیروگاه های بادی و سرعت احداث آنها ، یک هدف با ارزش برای انعطاف در طراحی است. از آنجا که سوخت بدست آمده مجانی و منابع باد نیز قابل پیش بینی است هزینه های انرژی باد با اطمینان زیاد قابل پیش بینی و تخمین است، نوسان های تهاجمی سوخت آسیب پذیر نشده و در ضمن قابل دسترس هستند. حال که به نقش تولید الکتریسیته توسط باد پی بردید به این منظور در این بخش سعی شده است تعریفی مختصر در مورد انرژی باد، خواص و خصوصیات آن ارائه شود تا در درک بهتر مطالب آتی کمک کند. لذا جهت اطلاعات کامل تر توصیه می شود به پروژه بررسی اقتصادی بودن کاربرد نیروگاه های بادی برای برقرار کردن روستاهای فاقد برق و دورافتاده استان خراسان-1377 و هم چنین مقاله دکتر گری جانسون مراجعه فرمائید. عموما شرح کامل درباره باد خارج از بحث ما می باشد و فقط به عنوان یادآوری برای علاقه مندان به موارد زیر اشاره
می گردد : 1- بادهای گلوبال 2- باد جیوسترافیک 3- باد سطحی 4- باد منطقه ای 5- قدرت باد 6- نمودار گل سرخی 7- قانون بتز 8- شناخت مسیرهای باد 9- مطالعات آماری باد

موارد فوق را می توانید با مطالعه منابع اصلی و دیگر منابع بیاموزید. مواردی که لازم به توضیح می باشند به صورت زیر خواهد بود.

2-2 سرعت وصل

حداقل سرعت باد است که در آن پره ها به حرکت در آمده و توان مصرفی، تولید می کنند. این سرعت باد عموما بین 7 تا 10 متر بر ساعت می باشد.

3-2 سرعت اسمی

سرعت اسمی می نیمم سرعتی است که در آن توربین بادی توان مصرفی پیش بینی شده را تولید می کند به عنوان مثال یک توربین 10 کیلوواتی تا زمانی که سرعت باد به میزان 25 متر بر ساعت نرسد توان 10 کیلووات را تولید نخواهد کرد. سرعت اسمی برای اغلب ماشین ها در محدوده 25 تا 35 متر بر ساعت است. در سرعتهای باد بین سرعتهای وصل و سرعت اسمی، خروجی توان از توربین بادی با افزایش سرعت باد افزایش می یابد.خروجی بیشتر ماشینها از حد اسمی آن تجاوز نمی کند، از این رو اغلب سازندگان، گرافهایی به نام «منحنی های توان» را ارائه می دهند که این منحنی ها نشان می دهند که چگونه خروجی توربین با تغییر سرعت باد، تغییر می کند.

4-2 سرعت قطع

در سرعت های بسیار بالای باد، عموما بین 45 تا 80 متر بر ساعت، اغلب توربین های بادی، تولید برق را متوقف کرده و از کار می افتند. این سرعت باد که موجب از کار افتادگی توربین می شود به نام سرعت قطع، خوانده می شود. داشتن سرعت قطع، یک ویژگی ایمنی برای عدم خرابی توربین است که از توربین در برابر آسیب احتمالی، محافظت می کند. از کار افتادگی در توربین ، ممکن است به چندین طریق اتفاق بیافتد، در برخی ماشین ها یک ترمز خودکار در چنین مواقعی توسط سنسور سرعت باد، فعال می شود، برخی ماشین ها با پیچاندن یا تغییر دادن زاویه پره ها جریان هوا را از زیر بال به طرف بالا در قسمت نوک ، هدایت می کنند. بعضی دیگر از توربین ها از زائده های سرعت گیر یا بالک های تاشو برای کاستن سرعت، استفاده می کنند که این زائده ها بر روی پره ها یا قطعه مرکزی، سوار شده و به طور خودکار در دورهای بالای روتور فعال می شوند یا به طور مکانیکی توسط فنری که از قبل پیچانده شده (تحت بار قرار گرفته) برای چرخاندن توربین به مسیری غیر از مسیر جریان باد برای از کار انداختن توربین استفاده می شود، پس از آنکه سرعت باد به حالت عادی برگشت معمولا توربین دوباره به حالت عادی به کار خود ادامه می دهد.

5-2 - حد بتز

این حد ، جریان هوایی است که از روی پره ها و از سطح روتور گذشته و سبب کار کردن توربین بادی می شود، توربین بادی با کند کردن سرعت باد، انرژی آن را می گیرد. به طور تئوریکی ماکزیمم مقدار انرژی موجود در باد که می تواند توسط روتور توربین بادی جمع آوری شود تقریبا 59 درصد است. این مقدار به «حد بتز» معروف است اگر بازدهی پره ها 100 درصد بود به دلیل اینکه انرژی هوا توسط پره ها گرفته می‌شد توربین به طور کامل از کار می افتاد و در عمل بازده گرفتن از انرژی توسط روتور به اندازه 59 درصد نمی رسد. این بازدهی معمولا بین 35 تا 45 درصد است.

یک سیستم انرژی باد کامل ، شامل روتور، جعبه دنده انتقال ، ژنراتور ، انباره و بقیه وسایل که همگی بازدهی پائین تر از ایده آل دارند، (بسته به مدل آن) بین 10 تا 30 درصد کل انرژی موجود در باد را تحویل خواهد داد.

6-2 - بررسی کمی سیستمهای مبدل باد

1-6-2- در سال 1984 در کالیفرنیا یک مزرعه باد با 75 توربین kw 330 و دو توربین kw 750 به شبکه سراسری متصل شده اند که مجموعا توان تولیدی آنها kw 26 است. در ابتدا که سیستم کوچک بود و یک بار محلی را تغذیه می کرد، در توربینهای kw 330 از ژنراتور سنکرون به خاطر کم بودن اغتشاشات قدرت خروجی آن استفاده می شد ولی با بزرگتر شدن سیستم و اتصال آن به شبکه سراسری از ژنراتورهای آسنکرون با ولتاژ v480 استفاده می شد بدون اینکه این مجموعه روی شبکه تاثیر سوء زیادی داشته باشد در عین اینکه قیمت آنها نیز کاهش یافته است . همچنین در همین مزرعه باد در توربین kw 750 نصب شده که در ان ها نیز از ژنراتور آسنکرون با ولتاژ خروجی kv 1/4 استفاده شده است.

2-6-2- در سال 1985 یک توربین بادی داریوس (Darrieus)kw 224 طراحی و نصب شده است که از طریق یک ژنراتور سنکرون 10 قطب ، kw 224، v 1080 ، و HZ 60 و یک مبدل الکترونیکی AC/DC/AC ، از دو مبدل 6 پالسی تشکیل شده که مبدل AC/DC آن ، یکسو کننده دیودی و مبدل DC/AC آن ، اینورتر تریستوری است که عمل تنظیم فرکانسی و کنترل ولتاژخروجی را انجام می دهد. ولتاژ خروجی ژنراتور توسط AVR (Automatic voltage Regulator ) کنترل می شود.

3-6-2- در سال 1985 یک توربین باد محور عمودی با ظرفیت mw 4 طراحی و ساخته شد. مبدل الکتریکی این توربین از ژنراتور سنکرون، مبدل الکترونیک AC/DC/AC به همراه فیلتر ترانسفورمر قدرت در خروجی تشکیل شده است. مشخصات این مبدل به شرح زیر است.

و...

NikoFile


دانلود با لینک مستقیم


دانلود پایان نامه برق درمورد منابع انرژی فسیلی و هسته ای

پایان نامه ارشد برق شناسایی فرورزونانس در شبکه های توزیع انرژی الکتریکی توسط تبدیل موجک

اختصاصی از سورنا فایل پایان نامه ارشد برق شناسایی فرورزونانس در شبکه های توزیع انرژی الکتریکی توسط تبدیل موجک دانلود با لینک مستقیم و پر سرعت .

پایان نامه ارشد برق شناسایی فرورزونانس در شبکه های توزیع انرژی الکتریکی توسط تبدیل موجک


پایان نامه ارشد برق شناسایی فرورزونانس در شبکه های توزیع انرژی الکتریکی توسط تبدیل موجک

چکیده

یکی از عوامل سوختن و خرابی ترانسفورماتورها در سیستم های قدرت، وقوع پدیده فرورزونانس است. با توجه به اثرات مخرب این پدیده، تشخیص آن از سایر پدیده های گذرا از اهمیت ویژه ای برخوردار است که در این پایان نامه کارکرد دو شبکة عصبی ی ادگیری کوانتیزه کننده برداری (LVQ) و شبکه عصبی رقابتی در دسته بندی دو دسته سیگنال که دسته اول شامل انواع فرورزونانس و دس ته دوم شامل انواع کلیدزنی خازنی، کلیدزنی بار، کلیدزنی ترانسفورماتور می باشد، با استفاده از ویژگیهای استخراج شده توسط تبدیل موجک خانواده Daubechies تا شش سطح مورد بررسی قرار گرفته است. نقش شبکه های عصبی مذکور بعنوان طبقه بندی کننده، جدا سازی پدیده فرورزو نانس از سایر پدیده های گذر ا است. سیگنالهای مذکور با شبیه سازی توسط نرم افزار EMTP بر روی یک فیدر توزیع واقعی بدست آمده اند. برای استخراج ویژگیها، کلیه موجکهای موجود در جعبه ابزار Wavelet نرم افزار MATLAB بررسی شده است که تبدیل موجک خانواده Daubechies بعنوان مناسبترین موجک تشخیص داده شد. به منظور استخراج هرچه بهتر ویژگیها سیگنالها، الگوها نرمالیزه (مقیاس بندی) شده اند سپس انرژی شش سیگنال جزئیات حاصل از اعمال تبدیل موجک به عنوان ویژگیهای استخراج شده از الگوها، برای آموزش و امتحان دو شبکة عصبی مذکور بکار رفته است. به کمک این الگوریتم تفسیر برخی از رخدادها که احتمال بروز پدیده فرورزونانس در آنها وجود دارد قابل انجام بوده، همچنین میتوان نسبت به ساخت رله هایی برای مقابله با پدیده فرورزونانس کمک نماید. عناوین روشهای ارایه شده در این پایان نامه به شرح زیر می باشند:

1) شناسایی فرورزونانس با استفاده از تبدیل موجک و شبکه عصبی LVQ

2) شناسایی فرورزونانس با استفاده از تبدیل موجک و شبکه عصبی رقابتی

نتایج حاصل از این روشها بیانگر موفقیت بسیار هر دو روش در شناسایی فرورزونانس از سایر پدیده های گذرا می باشد.

 

 

 

فهرست مطالب:

فصل اول: مقدمه......................................................................................................................... ١
فصل دوم: مروری یر کارهای انجام شده..................................................................................... ٤
١‐ مقدمه ............................................................................................................................................ ٥ ‐٢
٢‐ مروری بر روشهای شناسایی اغتشاشات کیفیت توان ................................................................... ۵ ‐٢
٣‐ مروری بر روشهای شناسایی خطای امپدانس بالا ......................................................................... ٩ ‐٢
فصل سوم: پدیده فرورزونانس.................................................................................................... ١٥
١‐ مقدمه ............................................................................................................................................ ١٦ ‐٣
٢‐ تاریخچه فرورزونانس................................................................................................................... ١٧ ‐٣
٣‐ موارد وقوع فرورزونانس در سیستم های قدرت ......................................................................... ۱۷ ‐٣
٤ ‐ شروع فرورزونانس...................................................................................................................... ١٨ ‐٣
١‐ شرایط ادامه یافتن فرورزونانس ......................................................................................... ١٨ ‐٤‐٣
٥‐ اثرات نامطلوب فرورزونانس........................................................................................................ ١٩ ‐٣
٦‐ مبانی پدیده فرورزونانس ............................................................................................................. ٢٠ ‐٣
٧‐فرورزونانس در ترانسفورماتورهای توزیع ..................................................................................... ٢٢ ‐٣
١‐ فرورزونانس پایدار .............................................................................................................. ٢٣ ‐٧‐٣
٢‐ فرورزونانس ناپایدار............................................................................................................ ٢٣ ‐٧‐٣
٨‐ تاثیر نوع سیم بندی ترانسفورماتورها............................................................................................ ٢٤ ‐٣
٩‐ تاثیر بار بر اضافه ولتاژهای فرورزونانس....................................................................................... ٢٤ ‐٣
١٠ ‐ طبقه بندی مدلهای فرورزونانس ................................................................................................ ٢٥ ‐٣
١١ ‐ شناسایی فرورزونانس................................................................................................................. ٢٥ ‐٣
فصل چهارم: مبانی علمی روشهای پیشنهادی............................................................................... ٢٧
١‐ از تبدیل فوریه تا تبدیل موجک.................................................................................................... ٢٨ ‐٤
٢‐ سه نوع تبدیل موجک................................................................................................................... ٣٣ ‐٤
١‐تبدیل موجک پیوسته............................................................................................................ ٣٣ ‐٢‐٤
٢‐ تبدیل موجک نیمه گسسته.................................................................................................. ٣٥ ‐٢‐٤
٣‐ انتخاب نوع تبدیل موجک......................................................................................................... ۳۷ ‐٤
سریع ........................................................................... ۳۷ DWT ٤‐ آنالیز مالتی رزولوشن و الگریتم ‐٤
١‐ آنالیز مالتی رزولوشن ....................................................................................................... ٣٧ ‐٤‐٤
٥‐ زبان پردازش سیگنالی ............................................................................................................... ٤٠ ‐٤
٦‐ شبکه عصبی .............................................................................................................................. ٤٥ ‐٤
١‐ مقدمه .................................................................................................................................. ٤٥ ‐٦‐٤
٢‐ یادگیری رقابتی................................................................................................................. ٤٦ ‐٦‐٤
١‐ روش یادگیری کوهنن ................................................................................................. ٤٧ ‐٢ ‐٦‐٤
٢‐ روش یادگیری بایاس .................................................................................................. ٤٨ ‐٢ ‐٦‐٤
٧‐ نگاشت های خود سازمانده ..................................................................................................... ٥٠ ‐٤
٨‐ شبکه یادگیری کوانتیزه کننده برداری ...................................................................................... ٥٢ ‐٤
٥٣ ................................................................................................... LVQ ١‐ روش یادگیری 1 ‐٨‐٤
٢‐ روش یادگیری تکمیلی..................................................................................................... ٥٥ ‐٨‐۴
٩‐ مقایسه شبکه های رقابتی ........................................................................................................ ٥٥ ‐٤
فصل پنجم: جمع آوری اطلاعات ................................................................................................ ٥٧
١‐ نحوه بدست آوردن سیگنالها......................................................................................................... ٥٨ ‐٥
١‐ بدست آوردن سیگنالهای فرورزونانس................................................................................. ٥٨ ‐١‐ ٥
٢‐ انواع کلیدزنیها و انواع سیم بندی در ترانسفورماتورها............................................................. ٥٩ ‐١‐٥
٣‐ اثر بار بر فرورزونانس.......................................................................................................... ٦٤ ‐١‐ ٥
٤‐ اثر طول خط......................................................................................................................... ٦٥ ‐١‐ ٥
٥‐ بدست آوردن سیگنالهای سایر حالات گذرا............................................................................. ٦٦ ‐١‐٥
فصل ششم: پیاده سازی الگوریتم و نتایج شبیه سازی .............................................................. ٧٤
١‐ مقدمه ........................................................................................................................................ ٧٥ ‐٦
٢‐ تعیین کلاسها و تعداد الگوهای هر کلاس ................................................................................ ٧٥ ‐٦
٣‐ اعمال تبدیل موجک و استخراج ویژگیها ................................................................................. ٧٥ ‐٦
٨١ ................................................................LVQ ٤‐ پیاده سازی الگوریتم با استفاده از شبکه عصبی ‐٦
٥‐ پیاده سازی الگوریتم با استفاده از شبکه عصبی رقابتی.............................................................. ٨٨ ‐٦
فصل هفتم: نتیجه گیری و پیشنهادات........................................................................................ ٩٥
١‐ نتیجه گیری................................................................................................................................ ٩٦ ‐٧
٢‐ پیشنهادات ................................................................................................................................. ٩٨ ‐٧
فهرست منابع


دانلود با لینک مستقیم


پایان نامه ارشد برق شناسایی فرورزونانس در شبکه های توزیع انرژی الکتریکی توسط تبدیل موجک

مقاله انرژی هسته ای از ابتدا تا انتها

اختصاصی از سورنا فایل مقاله انرژی هسته ای از ابتدا تا انتها دانلود با لینک مستقیم و پر سرعت .

مقاله انرژی هسته ای از ابتدا تا انتها


مقاله انرژی هسته ای از ابتدا تا انتها

نوع فایل : Word

تعداد صفحات : 51 صفحه

 

چکیده :

انرژی یکی از مهمترین نیاز های جامعه امروزی است ، از آنجایی که استحصال انرژی از منابع سوخت فسیلی برای بشر و محیط زیست او ، به دلیل ایجاد گازهای گلخانه ای ،  زیان های جبران ناپذیری را به همراه دارد ، این روزها جامعه بشری به دنبال جایگزین های نوینی از انرژی است . از مناسب ترین آنها   می توان به انرژی هسته ای نهفته در هسته اتم ها اشاره کرد ،که این انرژی بیش از 5 دهه است که مورد بهره برداری قرار دارد . استفاده از نیروی هسته‌ای از 50 سال پیش آغاز شد و اینک این نیرو همان اندازه از برق جهان را تأمین می‌کند که 40 سال پیش بوسیله تمام منابع انرژی تأمین می‌شد. حدود دو سوم از جمعیت جهان در کشورهایی زندگی می‌کنند که نیروگاههای هسته‌ای آنها در زمینه تولید برق و زیر ساختهای صنعتی نقش مکمل را ایفا می‌کنند. نیمی از مردم جهان در کشورهایی زندگی می‌کنند که نیروگاههای هسته‌ای در آنها در حال برنامه‌ریزی و یا در دست ساخت هستند. به این ترتیب ، توسعه سریع نیروی هسته‌ای جهان مستلزم بروز هیچ تغییر بنیادینی نیست و تنها نیازمند تسریع راهبردهای موجود است. امروزه حدود 440 نیروگاه هسته‌ای در 31 کشور جهان برق تولید می‌کنند. بیش از 15 کشور از مجموع این تعداد در زمینه تأمین برق خود تا 25 درصد یا بیشتر ، متکی به نیروی هسته‌ای هستند. در اروپا و ژاپن سهم نیروی هسته‌ای در تأمین برق بیش از 30 درصد است، در آمریکا نیروی هسته‌ای 20 درصد از برق را تأمین می‌کند. در سرتاسر جهان ، دانشمندان بیش از 50 کشور از حدود 300 راکتور تحقیقاتی استفاده می‌کنند تا درباره فناوریهای هسته‌ای تحقیق کرده و برای تشخیص بیماری و درمان سرطان ، رادیوایزوتوپ تولید کنند.همچنین در اقیانوسهای جهان راکتورهای هسته‌ای نیروی محرکه بیش از 400 کشتی را بدون اینکه به خدمه آن و یا محیط زیست آسیبی برسانند، تأمین می‌کنند.

 

فهرست مطالب :

کاربرد انرژی هسته ای

امنیت نیروگاه هسته‌ای

نگرانی‌های محیط زیستی

امتیاز و برتری انرژی هسته‌ای

اولین واکنش ذ نجیره ای خود تقویت شونده

پیشرفت انرژی هسته ای برای مقاصد صلح آمیز

انرژی هسته ای در ایران

اورانیوم

منابع اورانیم

آسیاب کردن اورانیوم

اکتشاف و استخراج و تغلیظ اورانیم

خواص اشعه رادیواکتیو

خواص ذره آلفا

خواص ذره بتا

خواص اشعه گاما

کیک زرد چیست؟

روش تهیه کیک زرد

مواد تشکیل‌دهنده کیک زرد

کاربردهای کیک زرد

غنی سازی اورانیم

روشها ی جداسازی و غنی سازی ایزوتوپ اورانیوم

روش انتشار گازی دیفیوژن

روش سانتریفیوژ گازی

تاریخچه بمب اتم

تقسیم بندی انرژی انفجار سلاح اتمی

بازفرآوری سوخت

راکتور های هسته ای

رآکتور آب تحت فشار

رآکتور آب جوشان

انرژی شکافت هسته‌ای

راکتورهای تحقیقاتی تانکی

مزایای راکتور های زاینده سریع

راکتورهای آب سبک تحت فشار

راکتور های خنک شونده با گاز

راکتور های آب سنگین تحت فشار

واکنش های دوتریم- تریتیم

ساختار همجوشی هسته ای:

سوخت های همجوشی

مدیریت زباله های هسته ای

پسمان های هسته ای

 


دانلود با لینک مستقیم


مقاله انرژی هسته ای از ابتدا تا انتها

دانلود پایان نامه شرح دستگاه آنالایزر بهینه ساز مصرف انرژی

اختصاصی از سورنا فایل دانلود پایان نامه شرح دستگاه آنالایزر بهینه ساز مصرف انرژی دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه شرح دستگاه آنالایزر بهینه ساز مصرف انرژی


دانلود پایان نامه شرح دستگاه آنالایزر بهینه ساز مصرف انرژی

امــروزه بهران مصرف برق شاید مسئله ای مشکل سـاز برای آینده کشورمـان باشد ، با کاهش و صـرفه جویی در مصـرف برق شاید بتوان نیمی از این مشکل را حل نمود ، اما با کمی تدبیر می توان کمک بزرگی به آینده و اقتصاد نمود .

 

ساخت دستگاه آنالایزر (VCA005) تنها گامی در بهینه سازی مصرف انرژی  می باشد ، این دستگاه با آنالیز کامل از مصـرف انرژی نموداری بصورت ماکزیمم و مینیمم مصرف در اختیار کاربر قرار می دهـد ، بنابراین کاریر قادر خواهد بود ایرادات مصرف برق را شناسایی نموده و سعی در رفع اشکالات نماید . بنابراین از این طریق خواهیم توانست کمک شایانی در بهتر مصرف نمودن انرژی انجام دهیم .

 

با نصب این دستگاه در کارنجات و رفع ایرادات احتمالی که بوسیله آنالیز برق شناسایی خواهد شد میتوان گامی بزرگ در بهینه سازی مصرف برق و اقتصاد کشور برداشت .

امیدوارم با راهنمایی و کمک اساتید محترم و ساخت دستگاه فوق الذکر توانسته باشم کمکی هر چند کوچک به اقتصاد کشورم کرده باشم .

- مقدمه
2- بلوک و دیاگرام دستگاه
3- توضیح عملیات قطعات رسم شده در بلوک دیاگرام
     الف – 89C51(1)
     ب – 89C51(2)
     ج – HIN 232
     د- مدارات یکسو کننده و تقویت کننده
     ه – تراشه ADC808
     و – طرز کار LCD
4- شرح کار دستگاه
5- مشخصات دستگاه
6 – مزایای دستگاه
7- سخت افزار دستگاه
8- مدارات قسمت نمونه گیری ولتاژ و جریان
9- طرز کار ADC 808
10- نرم افزار دستگاه
11- شرح عملکرد نرم افزار
12- شرح کلیدهای مختلف نرم افزار
13- آنالیز اطلاعات ذخیره شده
14-توضیحات نرم افزار اسمبلی میکرو پروسسورها
15- توضیحات نرم افزار تحت ویندوزبا Visual C++

 


دانلود با لینک مستقیم


تبادل انرژی گرمایی به صورت پیوسته و عمودی از صفحات عمودی فلز به طریق مکش یا تزریق

اختصاصی از سورنا فایل تبادل انرژی گرمایی به صورت پیوسته و عمودی از صفحات عمودی فلز به طریق مکش یا تزریق دانلود با لینک مستقیم و پر سرعت .

تبادل انرژی گرمایی به صورت پیوسته و عمودی از صفحات عمودی فلز به طریق مکش یا تزریق


تبادل انرژی گرمایی به صورت پیوسته و عمودی از صفحات عمودی فلز به طریق مکش یا تزریق

فایل بصورت ورد (قابل ویرایش) و در56صفحه می باشد

 

 

چکیده:

خاصیتهای رد و بدل شدن حرارت و جریانش به طور پیوسته از ورقه های عمودی و میزان حرکت آنها از سطح سوراخ به سمت پایین در دست مطالعه قرار گرفته تزریق یا مکش متحد یا غیر متحد بر روی سطح صفحه قابل اتفاق افتادن است. اختلاف سرعت و دما که به خاطر روش حجم محدود به وجود آمده قابل استفاده قرار می گیرند تاکل نیروهای وارد شده را اندازه گیری کنند. این نیروها شامل وزش های گرمایی طبیعی یا مخلوط شده هستند، تأثیر PR ، شدت نیروی پارامتر B و مکش و تریق پارامتر D بر روی اصطکاک و ضریب حرارتی جا به جایی قابل اندازه گیری هستند. مقایسه نتیجه ها با روشهای سادة رایج و راه حل های مختلف محدود موجود در رابطه ها و بررسی دقیق راه حل ها برای پیدا کردن رابطة جریان مکش نشان دهندة یک اختلاف نظر بی نظیر است. محل نزدیک به سوراخ روی صفحه دلیلی است برای پخش شدن نیرو، وقتی  سریعاً کاهش پیدا می کند و همزمان  افزایش پیدا می کند. مقدار تمام این تبادل نیروها در منطقه  ، افزایش  تا زمانی ادامه پیدا می کند نیروی رانش در حد تعادل قرار بگیرد. در منطقه ای که این نیروهای گرمایی در حال مخلوط شدن هستند و همچنین نیروی رانش در حال افزایش می باشد، میزان جابه جایی گرما نیز در حال متعادل شدن است. بالاخره در این منطقه  عامل وزش گرمایی طبیعی باعث به وجود آمدن وزش گرمایی طبیعی خالص می شود و در مورد مکش متحد و کاهش نیروها در منطقة سوراخ روی صفحه، مقدار نیروها و رد و بدل شدن میزان حرارت به مقداری ثابت و مستقل می رسد. نتایج بدست آمده از  برای تشخیص دادن گونه های مختلف ورزش های گرمایی و تعیین D,B,Pr قابل استفاده قرار می گیرد.

 

 

) مقدمه..................................... 1

2) فرمول های ریاضی و چگونگی مراحل محاسبات... 6

     1-2) فرضیات پایه ای و رابطه های هدایت کننده    6

     2-2) شرایط مرزی ....................... 8

        2-2-2) دیوارة برآمدة مرده........... 9

        3-2-2) جریان آزاد................... 10

        4-2-2) مجرای خروج................... 10

     3-2) مراحل راه حل های عددی............. 11

3) نتایج و توضیحات.......................... 13

     1-3) درستی و اعتبار مدل عددی........... 13

     2-3) خصوصیات جابجایی گرمایی برای کشش متحد  19

     3-3) دما و پراکندگی در Velocity........... 28

     4-3) مطالعات پارامتری.................. 35

     5-3) نقشهای مربوط به مناطق وزش گرمایی.. 43

     6-3) مقایسه مشکلات از نوع Blasius.......... 47

4) نتیجه.................................... 49


تبادل انرژی گرمایی به صورت پیوسته و عمودی از صفحات عمودی فلز به طریق مکش یا تزریق:

 

 

 


دانلود با لینک مستقیم