سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله در مورد انواع ترانزیستور

اختصاصی از سورنا فایل مقاله در مورد انواع ترانزیستور دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد انواع ترانزیستور


مقاله در مورد انواع ترانزیستور

موضوع :

مقاله در مورد انواع ترانزیستور

( فایل word قابل ویرایش )

تعداد صفحات : 33

فهرست مطالب :
عنوان :
تاریخچه ترانزیستور
ترانزیستور چیست
ترانزیستور چگونه کار می کند
ترانزیستور چه کاری انجام میدهد
اختراع رادیو
مشکل آشکار سازی
تقویت
لامپ های خلأ یکسوساز
تقویت کنندگی لامپ خلأ
ترانزیستور
ترازیستور دوقطبی پیوندی
انواع ترانزیستور پیوندی
ساختمان ترانزیستور پیوندی
طرزکار ترانزیستور پیوندی
نحوه اتصال ترانزیستورها
اتصال کلکتور مشترک
ساختار و طرز کار ترانزیستور اثر میدانی – فت
منابع

 

 

تاریخچه ترانزیستور
ترانزیستور در سال 1947 در آزمایشگاه های بل هنگام تحقیق برای تقویت کننده های بهتر و یافتن جایگزینی بهتر برای رله های مکانیکی اختراع شد.لوله های خلاء، صوت و موسیقی را در نیمه اول قرن بیستم تقویت کرده بودنداما توان زیادی مصرف می کردند و سریعا می سوختند .


ترانزیستور چیست؟
ترانزیستور در سال 1947 در آزمایشگاه های بل هنگام تحقیق برای تقویت کننده های بهتر و یافتن جایگزینی بهتر برای رله های مکانیکی اختراع شد.لوله های خلاء، صوت و موسیقی را در نیمه اول قرن بیستم تقویت کرده بودنداما توان زیادی مصرف می کردند و سریعا می سوختند . شبکه های تلفن نیز به صد ها هزار رله مکانیکی برای اتصال مدارات به همدیگر نیاز داشتند تا شبکه بتواند سر پا بایستد و چون این رله های مکانیکی بودند لازم بود برای عملکرد مطلوب همیشه تمیز باشند .در نتیجه نگه داری و سرویس آنها مشکل و پر هزینه بود.
با ظهور ترانزیستور قیمت ها نسبت به زمان استفاده از لامپ خلاء شکسته شد و بهبودی زیادی در کیفیت شبکه های تلفن حاصل گردید.


ترانزیستور چگونه کار می کند؟
ترانزیستور کاربرد های زیادی دارد اما دو کاربرد پایه ای آن به عنوان سوئیچ و استفاده در مدولاسیون است که کاربرد دومی بیشتر به عنوان تقوت کننده مورد نظر است.
این دو کاربرد ترانزیستور را می توان اینگونه توضیح داد :
سوئیچ همان کلید است مثل کلید چراغ خواب اتاقتان .دارای دو حالت روشن و خاموش است با قرار دادن کلید در حالت روشن چراغ اتاقتان روشن می شود و با قراردادن کلید در حالت خاموش چراغ خاموش می شود . بله به همین سادگی ! کاربرد ترانزیستور هم به عنوان سوئیچ به همن صورت است.
اما کاربرد تقویت کنندگی آن را می توان بدین صورت توضیح داد :
چراغ خواب نور کمی دارد اما اگر بتوان این نور را چنان زیاد کرد که تمام اتاق را روشن کند آنوقت عمل تقویت کنندگی صورت گرفته است.
فرق بین سوئیچینگ به وسیله ترانزیستور و به وسیله کلید برق! سرعت بسیار زیاد ترانزیستور است که می توان گاهی آن را در مقایسه با کلید آنی در نظر گرفت(صد ها هزار برابر و شاید میلیونها بار سریعتر).و اینکه ترانزیستور را می توان به دیگر منابع الکترونیکی متصل کرد مثلا به میکروفن به منبع سیگنال و حتی به یک ترانزیستور دیگر ....
ترانزیستور از عناصری به نام نیمه هادی مانند سیلیکون و ژرمانیوم ساخته می شود نیمه هادی ها جریان الکتریسیته را نسبتا خوب( – اما نه به اندازه ای خوب که رسانا خوانده شوند مانند مس و آلومنیوم و تقریبا بد اما نه به اندازه ای که عایق نامگذاری شوند مانند شیشه) هدایت می کنند به همین دلیل به آنها نیمه هادی می گویند.
عمل جادویی که ترانزیستور می تواند انجام دهد اینست که می تواند مقدار هادی بودن خود را تغییر دهد . هنگامی که لازم است یک هادی باشد می تواند هدایت خوبی دشته باشد و هنگامی که لازم است تا به عنوان عایق عمل کند جریان بسیار کمی را از خود عبور می دهد که می توان آن را ناچیز شمرد.
نیمه هادی ها در مقابل الکتریسیته عملکرد جالبی دارند یک قطعه از یک عنصر نیمه هادی را بین دو قطع از یک عنصر نیمه هادی دیگر قرار دهید.جریان کم قطعه وسطی قادر است که جریان دو قطعه ی دیگر را کنترل کند. جریان کمی که از قطعه ی وسطی می گذرد برای مثال می تواند یک موج رادیوئی یا جریان خروجی از یک ترانزیستور دیگر باشد .حتی اگر جریان ورودی بسیار ضعیف هم باشد( مثلا یک سیگنال رادیوئی که مسافت زیادی را طی کرده و از رمق افتاده است!) ترانزیستور می تواند جریان قوی مدار دیگری را که به آن وصل است کنترل کند. به زبان ساده ترانزیستور رفتار جریان خروجی از روی رفتار جریان ورودی تقلید می کند.نتیجه می تواند یک سیگنال تقوت شده و پرتوان رادیوئی باشد.


دانلود با لینک مستقیم


مقاله در مورد انواع ترانزیستور

مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور – مهندسی برق

اختصاصی از سورنا فایل مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور – مهندسی برق دانلود با لینک مستقیم و پر سرعت .

توضیحات :

نیمه هادی ها عناصری هستند که از لحاظ هدایت، ما بین هادی و عایق قرار دارند، و مدار آخر نیمه هادی ها، دارای 4 الکترون می‌باشد. ژرمانیم و سیلیکون دو عنصری هستند که خاصیت نیمه هادی ها را دارا می‌باشند و به دلیل داشتن شرایط فیزیکی خوب، برای ساخت نیمه هادی دیود ترانزیستور، آی سی (IC ) و …. مورد استفاده قرار می‌گیرد. در این مقاله به بررسی ساختمان و عملکرد نیمه هادی دیود و ترانزیستور پرداخته شده است.

 

فهرست مطالب :

  • مقدمه
  • نیمه هادی نوع N وP
  • اتصال PN و تشکیل نیمه های دیود
  • لایه تهی
  • پتانسیل سد
  • ولتاژ شکست
  • منحنی دیود در بایاس مستقیم
  • منحنی دیود
  • دیود ایده آل
  • ظرفیت دیود
  • دیود با ظرفیت متغیر(وراکتور)
  • دیود زنر
  • شکست بهمنی و شکست زنر
  • خاصیت خازنی پیوند و دیودهای وراکتور
  • مدارهای دیودی
  • عیب یابی
  • ساختمان نیمه هادی ترانزیستور
  • ترانزیستور بدون بایاس
  • بایاس FF و RR
  • بایاس FR
  • مستقیم ـ معکوس
  • مقاومت اهمی‌ بیس
  • ولتاژهای شکسته
  • عیوب متداول
  • تعمیرکار چگونه باید فکر کند؟
  • فهرست منابع

 

مشخصات :

  • تعداد صفحات : 33 صفحه
  • نوع فایل : فایل Word

دانلود با لینک مستقیم


مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور – مهندسی برق

دانلودمقاله ترانزیستور

اختصاصی از سورنا فایل دانلودمقاله ترانزیستور دانلود با لینک مستقیم و پر سرعت .

 

 

 

چکیده مقاله :
علم الکترونیک با اختراع ترانزیستور وارد فاز جدیدی از تحقیق و اختراع شد .هر روز اخباری را مبنی بر اختراعات جدید در زمینه الکترونیک می شنویم که مطمئنا در کالبد شکافی این اختراعات به نقش پر اهمیت ترانزیستور پی خواهیم برد
متن کامل مقاله :
علم الکترونیک با اختراع ترانزیستور وارد فاز جدیدی از تحقیق و اختراع شد .هر روز اخباری را مبنی بر اختراعات جدید در زمینه الکترونیک می شنویم که مطمئنا در کالبد شکافی این اختراعات به نقش پر اهمیت ترانزیستور پی خواهیم برد .

 

 

 

ترانزیستور یک قطعه سه پایه است که ساختار فیزیکی آن بر اساس عملکرد نیمه هادی ها می باشد.ترانزیستور را از دو نوع نیمه هادی با نام سلسیوم و ژرمانیوم می سازند.عموما در یک تقسیم بندی ترانزیستور ها را به دو دسته ترانزیستور های BJT و FET تقسیم می کنند . ترانزیستور های BJT با نام ترانزیستور های پیوند دو قطبی و ترانزیستور های FET با نام ترانزیستور های اثر میدان شناخته شده¬اند.FETها دارای سرعت سوئیچینگ کمتر از BJT هستند .

 

معمولا ترانزیستور را با دو دیود مدل سازی می کنند از این مدل برای تشخیص سالم بودن ترانزیستور استفاده می کنند.عملکرد ترانزیستور هابه عنوان یک طبقه در مدار بستگی به نظر طراح دارد اما در صورتی که ترانزیستور را یک جعبه سیاه در نظر بگیریم که دارای دو ورودی و دو خروجی است با توجه به اینکه ترانزیستور دارای سه پایه است باید یکی از پایه ها را به عنوان پایه مشترک بین ورودی و خروجی در نظر بگیریم. این پایه مشترک اساس آرایش های مختلف ترانزیستور است .یکی از پایه های ترانزیستور با نام Base و پایه دیگر با نام امیتر (تزریق کننده) و پایه آخر با نام کالکتور (جمع کننده ) شناخته شده است . بسته به اینکه کدامیک از پایه های مذکور به عنوان پایه مشترک در نظر گرفته شود آرایش های بیس مشترکCommon Base – کالکتور مشترکCommon Collector- امیتر مشترک Common Emitter – ممکن خواهد بود.

 

 

 

هر کدام از این آرایش ها دارای یک خصوصیت خواهند بود که متفاوت با دیگر آرایش ها است مثلا امیتر مشترک دارای بهره توان بسیار زیاد است و یا بهره ولتاژ بیس مشترک زیاد است و...
ترانزیستور در هر مداری می تواند متفاوت از قبل ظاهر شود- منبع ولتاژ یا منبع جریان و یا تقویت کننده ولتاژ و ....- این تفاوت را المانهای همراه ترانزیستور که اکثرا مقاومت و خازن(دیود و...) هستند تعیین می کنند نحوه قرار گیری این المانها به همراه ترانزیستور و منبع تغذیه را بایاس ترانزیستور گویند.در مدار های بایاس برای ترانزیستور یک ولتاژ مثبت به همراه زمین یا یک ولتاژ مثبت به همراه ولتاژ منفی را برای ترانزیستور بسته به کاربرد در نظر می گیرند .

 

عملکرد ترانزیستور ها(BJT) در سه ناحیه تعریف می شود . 1-ناحیه قطع 2- ناحیه فعال 3- ناحیه اشباع
این سه ناحیه بر اساس بایاس پایه های ترانزیستور و ولتاژ آن ها تعریف می شود .
ترانزیستور در مدارات عمدتا به صورت زیر ظاهر می شود :

 

1- به عنوان کلید به منظور قطع و وصل قسمتی از مدار

 

از ترانزیستور در ناحیه قطع و اشباع به عنوان کلید دیجیتال و سوئیچ استفاده می کنند .ولتاژ VCE در حالت اشباع کمتر از 0.2 است . در حالت اشباع توان تلف شده ترانزیستور بسیار کم است زیرا توان تلف شده ترانزیستور از حاصلضرب ولتاژ VCE و IC بدست می آید که هردو مقدار کوچکی هستند.

 

2- به عنوان تقویت کننده ولتاژ

 

3- به عنوان تقویت کننده جریان

 

4- به عنوان منبع جریان ثابت

 

5- به عنوان منبع ولتاژ ثابت

 

و...

 

در 4 مورد بعدی بالا از ترانزیستور در ناحیه فعال که همان ناحیه خطی عملکرد ترانزیستور است استفاده می شود .

 

آرایش های مداری مشهور :

 

1- امیتر فالوور (Emitter follower) :

 

 

 

شکل موج خروجی دنبال کننده شکل موج ورودی است (وجه تسمیه) مقاومت کوچک موجود در بیس به منظور جلوگیری از نوسانات ناخواسته قرار گرفته است .

 

 

 

1- زوج دارلینگتون

 

هر ترانزیستور دارای یک خصوصیت با نام بتا β است که بهره جریان ترانزیستور است در زوج دارلینگتون بتای زوج ترانزیستور از ضرب 2β1*β حاصل می شود که مقداری نزدیک به چند هزار خواهد شد .البته در این آرایش ترانزیستور خروجی باید تحمل این جریان کالکتور را داشته باشد که مسئله مهمی در طراحی است.

 

 

 

1- منبع جریان ثابت

 

در این آرایش ولتاژ هر کدام از دیود ها 0.7 است و در نتیجه ولتاژ بیس ترانزیستور 1.4 خواهد شد ولتاژ VBE (ولتاژ بیس – امیتر) هم در حدود 0.7 است پس جریان عبوری از امیتر مقدار 0.7/RE خواهد بود با انتخاب مناسب RE می توان مقدار جریان را به دلخواه انتخاب کرد .

 

 

 

4 – منبع ولتاژ ثابت

 

در این مدار ولتاژ خروجی توسط دیود زنر تامین می شود .ولتاژ خروجی تقریبا 0.7 کمتر از ولتاژ شکست زنر است .

ترانزیستور
ترانزیستور

 

ترانزیستور را معمولاً به عنوان یکی از قطعات الکترونیک می‌‌شناسند. ترانزیستور یکی از ادوات حالت جامد است که از مواد نیمه رسانایی مانند سیلیسیم (سیلیکان) ساخته می‌شود.
کاربرد
ترانزیستور هم در مدارات الکترونیک آنالوگ و هم در مدارات الکترونیک دیجیتال کاربردهای بسیار وسیعی دارد. در آنالوگ می‌توان از آن به عنوان تقویت کننده یا تنظیم کننده ولتاژ (رگولاتور) و ... استفاده کرد. کاربرد ترانزیستور در الکترونیک دیجیتال شامل مواردی مانند پیاده سازی مدار منطقی، حافظه، سوئیچ کردن و ... می‌شود.به جرات می توان گفت که ترانزیستور قلب تپنده الکترونیک است.
عملکرد
ترانزیستور از دیدگاه مداری یک عنصر سه‌پایه می‌‌باشد که با اعمال یک سیگنال به یکی از پایه‌های آن میزان جریان عبور کننده از دو پایه دیگر آن را می‌توان تنظیم کرد. برای عملکرد صحیح ترانزیستور در مدار باید توسط المان‌های دیگر مانند مقاومت‌ها و ... جریان‌ها و ولتاژهای لازم را برای آن فراهم کرد و یا اصطلاحاً آن را بایاس کرد.
انواع
دو دسته مهم از ترانزیستورها BJT (ترانزیستور دوقطبی پیوندی) (Bypolar Junction Transistors) و FET (ترانزیستور اثر میدانی) (Field Effect Transistors) هستند. FET ‌ها نیز خود به دو دستهٔ Jfetها (Junction Field Effect Transistors) و MOSFETها (Metal Oxide SemiConductor Field Effect Transistor) تقسیم می‌شوند.
ترانزیستور دوقطبی پیوندی
در ترانزیستور دو قطبی پیوندی با اعمال یک جریان به پایه بیس جریان عبوری از دو پایه کلکتور و امیتر کنترل می‌شود. ترانزیستورهای دوقطبی پیوندی در دونوع npn و pnp ساخته می‌شوند. بسته به حالت بایاس این ترانزیستورها ممکن است در ناحیه قطع، فعال و یا اشباع کار کنند. سرعت بالای این ترانزیستورها و بعضی قابلت‌های دیگر باعث شده که هنوز هم از آنها در بعضی مدارات خاص استفاده شود.
ترانزیستور اثر میدانی(JFET)
در ترانزیستور اثر میدانی با اعمال یک ولتاژ به پایه گیت میزان جریان عبوری از دو پایه سورس و درین کنترل می‌شود. ترانزیستور اثر میدانی بر دو قسم است: نوع n یا N-Type و نوع p یا P-Type. از دیدگاهی دیگر این ترانزیستورها در دو نوع افزایشی و تخلیه‌ای ساخته می‌شوند.نواحی کار این ترانزستورها شامل "فعال" و "اشباع" و "ترایود" است این ترانزیستورها تقریباً هیچ استفاده‌ای ندارند چون جریان دهی آنها محدود است و به سختی مجتمع می‌شوند.
ترانزیستور اثر میدانی(MOSFET)
این ترانزیستورها نیز مانند Jfetها عمل می‌کنند با این تفاوت که جریان ورودی گیت آنها صفر است. همچنین رابطه جریان با ولتاژ نیز متفاوت است. این ترانزیستورها دارای دو نوع PMOS و NMOS هستند که تکنولوژی استفاده از دو نوع آن در یک مدار تکنولوژی CMOS نام دارد. این ترانزیستورها امروزه بسیار کاربرد دارند زیرا براحتی مجتمع می‌شوند و فضای کمتری اشغال می‌کنند. همچنین مصرف توان بسیار ناچیزی دارند.
به تکنولوژی‌هایی که از دو نوع ترانزیستورهای دوقطبی و Mosfet در آن واحد استفاده می‌کنند Bicmos می‌گویند
البته نقطه کار این ترنزیستورها نسبت به دما حساس است وتغییر می‌کند.بنابراین بیشتر در سوئیچینگ بکار می‌‌روند AMB
پیوند به بیرون
• ترانزیستورها چگونه کار می‌کنند 1
ترانزیستور چگونه کار می کند
اگر ساده بخواهیم به موضوع نگاه کنیم عملکرد یک ترانزیستور را می توان تقویت جریان دانست. مدار منطقی کوچکی را در نظر بگیرید که تحت شرایط خاص در خروجی خود جریان بسیار کمی را ایجاد می کند. شما بوسیله یک ترانزیستور می توانید این جریان را تقویت کنید و سپس از این جریان قوی برای قطع و وصل کردن یک رله برقی استفاده کنید.
موارد بسیاری هم وجود دارد که شما از یک ترانزیستور برای تقویت ولتاژ استفاده می کنید. بدیهی است که این خصیصه مستقیما" از خصیصه تقویت جریان این وسیله به ارث می رسد کافی است که جریان وردی و خروجی تقویت شده را روی یک مقاومت بیندازیم تا ولتاژ کم ورودی به ولتاژ تقویت شده خروجی تبدیل شود.
جریان ورودی ای که که یک ترانزیستور می تواند آنرا تقویت کند باید حداقل داشته باشد. چنانچه این جریان کمتر از حداقل نامبرده باشد ترانزیستور در خروجی خود هیچ جریانی را نشان نمی دهد. اما به محض آنکه شما جریان ورودی یک ترانزیستور را به بیش از حداقل مذکور ببرید در خروجی جریان تقویت شده خواهید دید. از این خاصیت ترانزیستور معمولا" برای ساخت سوییچ های الکترونیکی استفاده می شود.
همانطور که در مطلب قبل (اولین ترانزیستورها) اشاره کردیم ترانزستورهای اولیه از دو پیوند نیمه هادی تشکیل شده اند و بر حسب آنکه چگونه این پیوند ها به یکدیگر متصل شده باشند می توان آنها را به دو نوع اصلی PNP یا NPN تقسیم کرد. برای درک نحوه عملکرد یک ترانزیستور ابتدا باید بدانیم که یک پیوند (Junction) نیمه هادی چگونه کار می کند.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   26 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله ترانزیستور

دانلود مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور

اختصاصی از سورنا فایل دانلود مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور دانلود با لینک مستقیم و پر سرعت .

 

 

نیمه هادی ها و ساختمان داخلی آنها
نیمه هادی ها عناصری هستند که از لحاظ هدایت ، ما بین هادی و عایق قرار دارند، و مدار آخر نیمه هادیها ، دارای 4 الکترون می‌باشد.
ژرمانیم و سیلیکون دو عنصری هستند که خاصیت نیمه هادی ها را دارا می‌باشند و به دلیل داشتن شرایط فیزیکی خوب ، برای ساخت نیمه هادی دیود ترانزیستور ، آی سی (IC ) و .... مورد استفاده قرار می‌گیرد.
ژرمانیم دارای عدد اتمی‌32 می‌باشد .
این نیمه هادی ، در سال 1886 توسط ونیکلر کشف شد.
این نیمه هادی ، در سال 1810توسط گیلوساک و تنارد کشف شد. اتمهای نیمه هادی ژرمانیم و سیلیسیم به صورت یک بلور سه بعدی است که با قرار گرفتن بلورها در کنار یکدیگر ، شبکه کریستالی آنها پدید می‌آید .
اتم های ژرمانیم و سیلیسیم به دلیل نداشتن چهار الکترون در مدار خارجی خود تمایل به دریافت الکترون دارد تا مدار خود را کامل نماید. لذا بین اتم های نیمه هادی فوق ، پیوند اشتراکی برقرار می‌شود.
بر اثر انرژی گرمائی محیط اطراف نیمه هادی ، پیوند اشتراکی شکسته شده و الکترون آزاد می‌گردد. الکترون فوق و دیگر الکترون هائی که بر اثر انرژی گرمایی بوجود می‌آید در نیمه هادی وجود دارد و این الکترون ها به هیچ اتمی‌وابسته نیست.
د ر مقابل حرکت الکترون ها ، حرکت دیگری به نام جریان در حفره ها که دارای بار مثبت می‌باشند، وجود دارد. این حفره ها، بر اثر از دست دادن الکترون در پیوند بوجود می‌آید.
بر اثر شکسته شدن پیوندها و بو جود آمدن الکترون های آزاد و حفره ها ، در نیمه هادی دو جریان بوجود می‌آید.جریان اول حرکت الکترون که بر اثر جذب الکترون ها به سمت حفره ها به سمت الکترون ها بوجود خواهد آمد و جریان دوم حرکت حفره هاست که بر اثر جذب حفره ها به سمت الکترون ها بوجود می‌آید. در یک کریستال نیمه هادی، تعداد الکترونها و حفره ها با هم برابرند ولی حرکت الکترون ها و حفره ها عکس یکدیگر می‌باشند.

 

1. نیمه هادی نوع N وP
از آنجایی که تعداد الکترونها و حفره های موجود در کریستال ژرمانیم و سیلیسیم در دمای محیط کم است و جریان انتقالی کم می‌باشد، لذا به عناصر فوق ناخالصی اضافه می‌کنند.
هرگاه به عناصر نیمه هادی ، یک عنصر 5 ظرفیتی مانند آرسنیک یا آنتیوان تزریق شود، چهار الکترون مدار آخر آرسنیک با چهار اتم مجاور سیلسیم یا ژرمانیم تشکیل پیوند اشتراکی داده و الکترون پنجم آن ، به صورت آزاد باقی می‌ماند.
بنابرین هر اتم آرسنیک، یک الکترون اضافی تولید می‌کند، بدون اینکه حفره ای ایجاد شده باشد. نیمه هادی هایی که ناخالصی آن از اتم های پنج ظرفیتی باشد، نیمه هادی نوع N نام دارد.
در نیمه هادی نوع N ، چون تعداد الکترون ها خیلی بیشتر از تعداد حفره هاست لذا عمل هدایت جریان را انجام می‌دهند . به حامل هدایت فوق حامل اکثریت و به حفره ها حامل اقلیت می‌گویند.
هرگاه به عناصر نیمه هادی ژرمانیم و سیلیسیم ، یک ماده 3 ظرفیتی مانند آلومنیوم یا گالیم تزریق شود، سه الکترون مدار آخر آلومنیوم با سه الکترون سه اتم سیلیسیم یا ژرمانیم مجاور ، تشکیل پیوند اشتراکی می‌دهند . پیوند چهارم دارای کمبود الکترون و در واقع یک حفره تشکیل یافته است .
هر اتم سه ظرفیتی، باعث ایجاد یک حفره می‌شود، بدون اینکه الکترون آزاد ایجاد شده باشد. در این نیمه هادی ناخالص شده، الکترون ها فقط در اثر شکسته شدن پیوندها بو جود می‌آیند.
نیمه هادی هایی که ناخالصی آنها از اتم های سه ظرفیتی باشد، نوع P می‌نامند .
حفره ها در این نیمه هادی به عنوان حامل های اکثریت و الکترون ها به عنوان حاملهای اقلیت وجود دارد، تبدیل یک نیمه هادی نوع p وn و بالعکس بوسیله عملی به نام «جبران»(Compensation) امکان پذیر می‌باشد .

 

2. اتصال PN و تشکیل نیمه های دیود
لحظه ای که دو قطعه نیمه هادی نوع P وN را به هم پیوند می‌دهیم، از آنجایی که الکترون ها و حفره ها قابل انتقال می‌باشند، الکترون های موجود در نیمه هادی نوع N به خاطر بار الکتریکی مثبت حفره ها ، جذب حفره ها می‌گردند. لذا در محل اتصال نیمه هادی نوع P وN ، هیچ الکترون آزاد و حفره وجود ندارد.
3ـ1) لایه تهی
گرایش الکترونهای طرف n پخش شدن در تمامی‌جهات است. بعضی از آنها از پیوندگاه می‌گذرند. وقتی الکترونی وارد ناحیه p می‌شود، یک حامل اقلیتی به حساب می‌آید.
وجود تعداد زیادی حفره در اطراف این الکترون باعث می‌شود که عمر این حامل اقلیتی کوتاه باشد. یعنی الکترون بلافاصله پس از ورود به ناحیه p به داخل یک حفره فرو می‌افتد. با این اتفاق ، حفره ناپدید و الکترون نوار رسانش به الکترون ظرفیت تبدیل می‌شود.
هر بار که یک الکترون از پیوندگاه می‌گذرد، یک زوج یون تولید می‌کند. دایره هایی که درون آنها علامت مثبت است، نماینده یو نهای مثبت و دایره های با علامت منفی نماینده یو نهای منفی اند . به دلیل بستگی کوالانسی ، یونها در ساختار بلوری ثابت اند و مانند الکترونهای نوار رسانش یا حفره ها نمی‌توانند به این سو و آن سو حرکت کنند.
هر زوج یون مثبت و منفی را دو قظبی می‌نامیم . ایجاد یک به معنی این است که یک الکترون نوار رسان ش و یک حفره از صحنه عمل خارج شده اند. ضمن اینکه تعداد دو قطبیها افزایش می‌یابد ، ناحیه ای در نزدیکی پیو ندگاه از بارهای متحرک خالی از بار را لایه تهی می‌نامیم .
3ـ2) پتانسیل سد
هر دو قطبی دارای یک میدان الکتریکی است . بردارها جهت نیروی وارد به بار مثبت را نشان می‌دهند. بنابراین ، وقتی الکترونی وارد لایه تهی می‌شود، میدان الکتریکی سعی می‌کند الکترون را به درون ناحیه n به عقب براند. با عبور هر الکترون، شدت میدان افزایش می‌یابد تا آنکه سرانجام گذرالکترون ازپیوندگاه متو قف می‌شود.
در تقریب دوم ، باید حاملهای اقلیتی رانیز منظور کنیم . به خاطر داشته باشیم که طرف p دارای تعداد الکترون نوار رسانش است که از گرما ناشی می‌شوند. آنها که در داخل لایه تهی واقع اند توسط میدان به ناحیه n برده می‌شوند. این عمل شدت میدان را اندکی کاهش می‌دهد و تعداد کمی‌حاملهای اکثریتی از طرف راست به چپ اجازه عبورمی‌یابند تا میدان به شدت قبلی خود بگردد. به محلی که در آن الکترون ها و حفره ها وجود ندارند را ناحیه تخلیه یا سر کنندگی می‌نامند.
حال تصویر نهایی تعادل را در پیوندگاه ارائه می‌دهیم:
1. تعداد کمی‌حاملهای اقلیتی از یک طرف پیوندگاه به طرف دیگر سوق می‌یابند. عبور آنها میدان را کاهش می‌دهد مگر اینکه،
2. تعداد کمی‌حاملهای اکثریتی از پیوندگاه با عمل پخش گذر کنند و شدت میدان را به مقدار اولیه برگردنند
میدان موجود بین یونها معرف اختلاف پتانسیلی است که به آن پتانسیل سد می‌گوییم . پتانسیل سد کنندگی برای نیمه هادی سیلیسیم بین 6/0 تا 7/0 ولت و برای نیمه هادی ژرمانیم بین 2/0 تا 3/0 ولت می‌نامند.
مقدار ولتاژی که لازم است تا سد کنندگی مورد نظر در پیوند PN خنثی شود را ولتاژ سد کنندگی می‌نامند و آن را با Vy نشان می‌دهند.
هنگام هدایت دیود ، افت ولتاژ دو سر آن در حالت ایده آل صفر و در حالت واقعی ، برابر مقدار ولتاژ سد کنندگی می‌باشد.
قطب منفی منبع به بلور n، و قطب مثبت آن به بلور p متصل است. این نوع اتصال را بایاس مستقیم می‌نامیم.
هرگاه پتانسیل منفی به آند(A) و پتانسیل مثبت به کاتد (K) وصل شود، دیود هدایت نمی‌کند و این حالت را بایاس مخالف دیود می‌نامند.
منبع dc را وارونه می‌بندیم تا بایاسی معکوس برای دیود برقرار شود.
میدانی که از خارج اعمال می‌شود با میدان لایه تهی هم جهت است. به این دلیل ، حفره ها و الکترونها به سوی دو انتهای بلوار عقب نشینی می‌کنند (از پیوندگاه دور می‌شوند) . الکترونهای دور شونده پشت سر خود یونهای مثبت بر جای می‌گذارند ، و حفره هایی که می‌روند یونهای منفی باقی می‌گذارند . بنابراین لایه تهی پهنتر می‌شود .هر چه بایاس معکوس بزرگتر باشد لایه تهی پهنتر است.
وقتی حفره ها و الکترونها از پیوندگاه دور می‌شوند، یونهای نوزاد اختلاف پتانسیل بین دو طرف لایه تهی را افزایش می‌دهند.
هر چه لایه تهی پهنتر می‌شود ، این اختلاف پتانسیل بزرگتر است. افزایش پهنای لایه تهی وقتی متوقف می‌شود که اختلاف پتانسیل آن با ولتاژ معکوس اعمال شده مساوی باشد.
هنگام قطع دیود ، مقاومت دو سر آن زیاد می‌باشد و مانند یک مدار باز عمل می‌کند.
با توجه به حالت های بررسی شده در خصوص دیود ، منحنی مشخصه ، زیرا به دست می‌آوریم.

 

3ـ3 ولتاژ شکست
اگر ولتاژ معکوس را افزایش دهیم سرانجام به ولتاژ شکست می‌رسیم ، در دیودهای یکسو ساز(آنهای که ساخته شده اند تا در یک جهت بهتر از جهت دیگر رسانایی داشته باشند)، ولتاژ شکست معمولاً ازV 50 بیشتر است.
همین که ولتاژ شکست فرا می‌رسد، تعداد زیادی حامل اقلیتی در لایه تهی ظاهر می‌شود و رسانش شدید می‌شود.
در بایاس معکوس الکترون به راست و حفره به چپ رانده می‌شود. سرعت الکترون ، ضمن حرکت زیاد می‌شود .
هرچه میدان لایه تهی قویتر باشد حرکت الکترون سریعتر است . در ولتاژی معکوس بزرگ، الکترونها به سرعتیهای بالا می‌رسند. این الکترونهای بسیار سریع ممکن است با یک الکترون ظرفیت برخورد کند.
اگر این الکترون بسیار سریع دارای انرژی کافی باشد، می‌تواند الکترون ظرفیت را به موازی در نوار رسانش حاصل می‌شود .
اکنون این دو الکترون هر دو شتاب می‌گیرند و می‌توانند دو الکترون دیگر را از جای خود بکنند. به این ترتیب ممکن است تعداد حاملهای اقلیتی بسیار زیاد شود و کار رسانش در دیود شدت گیرد.
حالت شکست بای بیشتر دیودها مجاز نیست. به عبارت دیگر، ولتاژ معکوس در دو سر دیود باید در مقداری کمتر از ولتاژ شکست نگه داشته شود.

 

3ـ4 منحنی دیود در بایاس مستقیم
چون منبع dc جریان مثبت را در جهت پیکان دیود برقرار می‌کند، دیود بایاس
مستقیم دارد. هرچه ولتاژ اعمال شده بیشتر باشد ، جریان دیود بیشتر است.
با تغییر ولتاژ اعمال شده، می‌توانید جریان دیود(با استفاده از آمپرسنج متوالی) و ولتاژ دیود(با ولت سنج موازی) را اندازه بگیرید. با ترسیم نقاط مربوط به جریانها و ولتاژهای متناظر نموداری ازجریان دیود بر حسب ولتاژ دیود به دست می‌آید.
3ـ5 منحنی دیود
وقتی دیودی را در بایاس معکوس قرار دهید . فقط جریان ضعیفی را به دست می‌آورید. با اندازه گیری جریان و ولتاژ دیود می‌توانید منحنی بایاس معکوس را رسم کنید.این منحنی چیزی شبیه خواهد بود . در اینجا هیچ مطلب شگفتی وجود ندارد.
به ازای تمام ولتاژهای معکوس کمتر از ولتاژ شکست BV ، جریان دیود بسیار ضعیف است در ولتاژ شکست به ازای افزایش اندکی در ولتاژ، جریان دیود به سرعت افزایش می‌یابد.
با انتخاب مقادیر مثبت برای ولتاژ و جریان مستقیم ، ومقادیر منفی برای ولتاژ و جریان معکوس ، می‌توانیم منحنیهای مستقیم و معکوس را روی یک تک نمودار رسم کنیم. در این نمودار کشش دیود را جمعبندی می‌کند و بیان می‌دارد که به ازای هر مقدار ولتاژ دیود چه جریانی از دیود می‌گذرد.
3ـ6 دیود ایده آل
تقریب دیود ایده آل تمام جزئیات را جز استخوان بندی عملکرد دیود کنار می‌گذارد . عمل دیود چیست؟ در جهت مستقیم به خوبی هدایت می‌کند و هدایت آن در جهت معکوس بسیار ضعیف است. در شرایط ایده آل ، وقتی دیود بایاس مستقیم دارد مانند یک رسانای کامل (ولتاژ صفر) است .
به اصطلاح مداری، دیود ایده آل مانند یک کلید خودکار عمل می‌کند. وقتی جریان مثبت در جهت پیکان دیود برقرار باشد کلید بسته است . اگر جریان مثبت بخواهد در جهت مخالف بگذرد، کلید باز است. این ساده ترین مدل است.
علیرغم اینکه تقریب دیود ایده آل در ابتدا افراطی به نظر می‌رسد ، ولی در بیشتر مدارهای دیودی پاسخهای مناسبی می‌دهد . مواقعی پیش می‌آید که این تقریب کارایی ندارد، به این دلیل ، به تقریب دوم و سوم نیاز داریم . ولی دیود ایده آل برای تحلیل مقدماتی مدارهای دیودی تقریب بسیار خوبی است.
3ـ7 ظرفیت دیود
دیود نیز مانند عناصری که پایه اتصال سیمی‌دارند ، ظرفیت ناخواسته ای دارد که ممکن است روی عمل آنها در بسامدهای بالا اثر بگذارد، این ظرفیت خارجی معمولا از 1PF کمتر است .
مع هذا ، ظرفیت داخلی که در پیوندگاه دیود ایجاد می‌شوند، از این ظرفیت خارجی مهمتر است، ظرفیت داخلی دیود را ظرفیت گذار می‌نامیم و با CT نمایش می‌دهیم . کلمه « گذار» به عبور از حاده نوع p به نوع n اشاره دارد . ظرفیت گذار را ظرفیت لایه تهی ، ظرفیت سد ، و ظرفیت پیوندگاه نیز می‌گویند.

 

3ـ8 دیود با ظرفیت متغییر(وراکتور)
ظرفیت گذار هر دیود با افزایش ولتاژ معکوس کاهش می‌یابد. دیودهای سیلیسیم که برای این اثر ظرفیتی متغیر بهینه می‌شوند دیود با ظرفیت متغیر (وراکتور) نام دارند.
در بسیاری از موارد، دیود با ظرفیت متغیر جای خازنهای متغیر مکانیکی را می‌گیرند. به عبارت دیگر ، وراکتور موازی با یک اقاگر تشکیل یک ودار تشدید می‌دهد، با تغییر ولتاژ معکوس وراکتور می‌توانیم بسامد بسامد تشدید را تغییر دهیم . این کنترل الکترونیکی بسامد تشدید در کوک کردن از دوره، نوسانگری روبشی،‌و کاربردهای دیگر مناسب است که ابدا مورد بحث قرار خواهند گرفت .
3ـ9 دیود زنر
دیود زنر برای کار در ناحیه شکست ساخته شده است . با تغییر میزان آلایش ، کارخانه های سازنده می‌توانند دیودهای زنری تولید کنند ولتاژ شکست آنها از 2 تا V 200 تغییر کند. با اعمال ولتاژ معکوسی که از ولتاژ شکست زنر در گذرد،‌وسیله ای خواهیم داشت که مانند یک منبع ولتاژ ثابت عمل می‌کند.

 

3ـ9ـ1 شکست بهمنی و شکست زنر
وقتی ولتاژ معکوس اعمال شده به مقدار شکست برسد، حاملهای اقلیتی در لایه تهی شتاب می‌گیرد و به سرعتهایی می‌رسند که بتوانند الکترونهای ظرفیت را از مدار های خارجی اتم جدا کنند. آنگاه الکترونهای تازه آزاد شده می‌توانند سرعتهای به اندازه کافی بالا را کسب و سایر الکترونهای ظرفیت را آزاد کنند. در این را بهمنی از الکترونهای آزاد ایجاد می‌شود. بهمن در ولتاژهای معکوس بیشتر از TV یا در این حدود به وجود می‌آید.
اثر زنر مطلب دیگری است. وقتی غلظت آلایش در دیودی خیلی زیاد باشد لایه تهی بسیار باریک می‌شود. به این دلیل میدان الکتریکیدر لایه تهی بسیا ر شدید است، وقتی شدت میدان تقریبا به V/cm 300000 برسد، میدان چندان شدید هست که الکترونها را از مدارهای ظرفیت خارج کند. ایجاد الکترونهای آزاد با این روش شکست زنر می‌نامیم (گسیل میدان قوی نیز گفته می‌شود).
برای ولتاژهای شکست کمتر ازv 4 اثر زنر بیشتر عمده است، اثر بهمنی برای ولتاژهای شکست بیشتر ازv 6 عمده می‌شود، و بین 4 و6 ولت این دو اثر با هم حضور دارند . در ابتدا تصور می‌شد اثر زنر تنها ساز و کار شکست در دیودهاست.
به این دلیل ، نام « دیود زنر» قبل ازکشف اثر بهمنی از کاربرد وسیعی بر خوردار شد . بنابراین کلیه دیودهایی که برای کار در ناحیه شکست بهینه شده اند، هنوز نام دیود زنر را بر خود دارند.

 

3ـ10خاصیت خازنی پیوند و دیودهای وراکتور
یک دیود در بایاس معکوس مثل یک خازن عمل می‌کند و ظرفیتی حدود 2PF (برای سیلیکنی) ازخود نشان می‌دهد. منطقه تخلیه در دیود مثل عایق دی الکترونیک در خازن و قسمتهای p وn مشابه صفحات خازن هستند با ازدیاد ولتاژ معکوس ، چون ضخامت منطقه تخلیه خم زیاد می‌شود، ظرفیت کاهش می‌یابد.
با فعال کردن نیمه هادی ها به طور مناسب ، « دیودهای وراکتور » که با تغییر ولتاژ مکوس از 2v تا30v ،‌ظرفیتشان از 10PF تا20PF تغییر می‌نماید.
اتز این دیودها در تیونرهایVHFوUHF (به خصوص در تلویزیونها) استفاده می‌شود تا ظرفیت خازن هماهنگ کننده، متناسب با اختلاف پتانسیل دو سرش بتواند به طور خودکار فرکانس دلخواه را تنظیم کند.

 

مدارهای دیودی
1. ترانس ورودی 2.یکسو ساز نیم موج
3. یکسو ساز تمام موج 4.یکسو ساز پل
5. فیلتر خازنی 6.محاسبه مقادیر دیگر
7.جریان ضربه ای 8 .عیب یابی
9.خواندن برگه داده 10.فیوز
11. ترانس ایده آل 12.رامنمای طراحی
13.محاسبه جریان ضربه ای 14. فیلترهای RCو LC
15. منبع تغذیه متقارن 16.چند برابر کننده ولتاژ
17. کلید110/220 18. محدود کننده
19. مهارکننده DC 20.آشکار ساز نوک به نوک
21.برگشت dc

 

3-11عیب یابی
وقتی مدار درست کار کند ولتاژ نقطه A نسبت به زمین V 18+ ، ولتاژ نقطه B نسبت به زمین V 10+ و ولتاژ نقطه Cنسلت به زمین V10+ است.
حال دو مورد عیب را در مدار فوق بررسی می‌کنیم. وقتی مداری درست کار نکند تعمیر کار می‌یابد کار را با اندازه گیری ولتاژها آغتز کند. این اندازه گیری ها معمولا باعث می‌شوند که بتوانیم محدوده عیب را پیدا کنیم .
برای مثال فرض کنید این ولتاژها را اندازه گیری کرده باشیم:
VB=+10V , VC=0V و V 18+=VA
با این مقادیر ممکن است احتمالات مختلفی به ذهن خطور کند اول اینکه ممکن است مقاومت بار قطع باشد که این حدس صحیح نیست چرا که در این صورت ولتاژ باردرهمان مقدار V10 باقی خواهد ماند.
احتمال دوم که به ذهن می‌رسد اتصال کوتاه مقاومت بار است که باز این حدس هم صحیح نیست چرا که در این صورت ولتاژ نقطه B هم برابر صفر خواهد بود.
در نتیجه تنها امکان موجود قطع سیستم اتصال بین دو نقطه خواهد بود که این جواب صحیح است .
این مثال از مواردی است که خرابی ایجاد شده نشانه واحدی ایجاد کرده است. در واقع تنها امکان موجود با توجه به مقادیر ولتاژ اندازه گیری شده قطع ارتباط بین نقاط B وC است.در صورتی که همه خرابی ها دارای نشانه واحدی نیستند. اکثر مواقع تعدادی خرابی نشانه مشترکی دارند. به عبارت دیگر ولتاژهای مشابهی ایجاد می‌کنند . برای روشن تر شدن موضوع فرض کنید تعمیر کار مقادیر ولتاژهای زیر را اندازه گیری کرده باشد.
V 0 = VC و 0= VB و V 18+=VA
خوب، در مورد این عیب چه فکر می‌کنید . ابتدا قطع شدن مقاومت سری (RS ) به ذهن خطور می‌کند که این حدس درستی است.
اما آیا این تنها خرابی متحمل است؟ در نظر بگیرید که شما با این فرض تغذیه را قطع کرده و به کمک اهم متر سعی درآزمایش مقاومت RS و یا ارتباطات مربوطه می‌نمایید اما هم مقاومت سالم است و هم اتصالات مربوطه درست است .
خوب مشکل در کجاست؟ اتصال کوتاه دیود زنر ،اتصال کوتاه مقاومت بار ، چکه لحیم بین نقاط B وC و زمین، بله همة این موارد هم می‌تواند عامل بروز چنین عیبی باشد. پس در این حالت شما موارد زیادی را باید تحقیق نمایید که بلاخره به علت اصلی خواهید رسید.
در خاتمه بخاطر داشته باشید که وقتی قطعه ای می‌سوزد معمولا قطع می‌شود . اما نه همیشه بعضی مواقع قطعات سوخته اتصال کوتاه می‌شوند. از دیگر موارد اتصال کوتاه همانطور که قبلا گفته شد چکه لحیم است که در برد مدار چاپی می‌تواند تولید اتصال کوتاه نماید.

 

4)ساختمان نیمه هادی ترانزیستور
از سال 1930 به بعد نیمه هادی ها به توجه به پیشرفت علم الکترونیک جای المان های لامپی را گرفتند و در سال 1947 آقایان والتر براتین و جان باردین عمل
تقویت سیگنال توسط ترانزیستور را آزمایش نموده اند.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   35 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید

 


دانلود با لینک مستقیم


دانلود مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور