سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق در مورد دیمر دیجیتال با ریموت کنترل

اختصاصی از سورنا فایل تحقیق در مورد دیمر دیجیتال با ریموت کنترل دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد دیمر دیجیتال با ریموت کنترل


تحقیق در مورد دیمر دیجیتال با ریموت کنترل

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه:15

 

  

 فهرست مطالب

 

مقدمه.................................

دیمر چیست؟.............................

دیمر دیجیتال............................

قسمت های مختلف مدار....................

لیست قطعات............................

لیست نرم افزارها......................

ترایاک................................

  1. MOC3021...............................

مدار پاور و آشکارساز عبور از صفر......

نحوه عملکرد مدار.......................

ترسیم نموداری عملیات...................

منابع.................................

 

 

 

 

مقدمه

سایه تاکنون برایتان پیش آمده باشد که نیاز به کنترل نور یک لامپ داشته باشید. مثلا نور چراغ مطالعه و یا نور لامپ اتاق.

آیا زمان کار با هویه نیاز داشته اید که گرمای هویه را کنترل کنید. تا احتمال صدمه دیدن قطعات مدارتان که شود؟

آیا مواقعی پیش آمده که بخواهید سرعت یک موتور را تغییر بدهید مثل سرعت موتور یک فن؟

آیا...

این پروژه در واقع طراحی، نقشه کشی، برنامه نویسی و پیاده سازی یک دیمر دیجیتال است. در طرح بنده ای دیمر دیجیتال به وسیله remote کنترل می شود.

دیجیتال بودن دیمر به آن قابلیت های کنترلی متنوع خواهد داد. برای مثال قابلیت کنترل با خط تلفن، کامپیوتر، اینترنت، ریموت کنترل و ...

 

 

 

 

 

دیمر چیست؟

دیمر وسیله ایست که می توان با کنترل زاویه آتش ترایاک موجود در آن نور یک لامپ را کم و یا زیاد کرد.

دیمر مقاومتی(دستی):

در این نوع دیمر کار کنترل و تنظیم زاویه آتش ترایاک را مقاومت و پتانسیومتر انجام می دهند. با چرخش ولوم دیمر نور لامپ کم و زیاد می شود.

که مدار را دمی آن به صورت زیر می باشد.

که با تغییر مقاومت متغیر، زاویه آتش ترایاک تغییر می کند و نتیجه مقدار ولتاژ رسیده به لامپ تغییر کرده، نور لامپ کم و زیاد می شود.

دیمر دیجیتال:

در دیمر دیجیتال کنترل زاویه آتش ترایاک به صورت دیجیتالی سبب دیمر دیجیتال مورد بحث به وسیله میکرو VAR طراحی و پیاده سازی شده است.

این مدار از قسمت های زیر تشکیل شده است.

  1. پاور Power
  2. آشکار ساز عبور از صفر Zero Cross Detector
  3. گیرنده و آشکار ساز IR
  4. کنترل کننده زاویه و دیمر

 


دانلود با لینک مستقیم


تحقیق در مورد دیمر دیجیتال با ریموت کنترل

دانلود مقاله دیجیتال واترمارک

اختصاصی از سورنا فایل دانلود مقاله دیجیتال واترمارک دانلود با لینک مستقیم و پر سرعت .

 

 

 

چکیده :
با گسترش سیستمهای چند رسانه ای تحت شبکه شده احساس نیاز به امنیت اطلاعات حمایت از کپی رایت در رسانه های دیجیتالی مختلف مانند تصویر ، کلیپ های صوتی ، ویدئو شدت گرفته است. ویکی از روشهای مناسب جهت رسیدن به این اهداف دیجیتال واترمارک می باشد که عبارت است از توانایی حمل اطلاعات همراه با رسانة مورد نظر جهت احراز هویت در مقاله کاربردهای مختلف واترمارکینگ و همچنین پارامترهایی که باید در واتر مارکینگ و همچنین پارامترهایی که باید در واترمارکینگ در نظر گرفته شوند را بررسی می کنیم و همچنین این مقاله یک الگوریتم جدید واترمارکینگ در حوزة DCT و بر اسا ایدة مدولاسیون FSK دو بعدی به کمک پترن های هادامارد ارائه می کند.
کلمات کلیدی:
احراز هویت ، تصویر ، Digital watermark ، مدولاسیون FSK دوبعدی ، پترن هاردامارد.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


1- مقدمه
گسترش سیستمهای چند رسانه ای و استفاده از شبکه های کامپیوتری و اینترنت دسترسی به اطلاعات دیجیتال و کپی برداری از آنها را به آسانی امکان پذیر نموده است که این ، نیازی جهت حفاظت از کپی رایت رسانه های دیجیتالی مختلف مانند تصویر ، کلیپ های صوتی ویدئو را بوجود آورده است بنابر این مسئله حفاظت از داده ها در مقابل کپی برداری و جعل از اهمیت بالایی برخوردار است ، به این دلیل باید از راهکارهایی برای کنترل کپی کردن استفاده نمود. حمایت کپی رایت شامل احراز هویت و شناسایی کپی های قانونی یک تصویر است.
از روشهای حل این مشکل می توان به استفاده از واتر مارکینگ و روشهای مختلف رمزنگاری اشاره نمود اما این روشها اگر چه مزایایی دارند اما دارای چندین عیب نیز می باشند از جمله می توان به گم شدن رمز عبور تغیر محتویات در طول اتقال صرف زمان جهت رمز گشایی و برگرداندن داده نام برد که یکی از روشهای حل این مشکل اضافه کردن یک ساختار مرئی یا نامرئی به تصویر است که می توان آنها را مارک دار کرد، که این روش، دیجیتال واتر مارک یا سایه گذاری دیجیتالی نامیده می شود.
واتر مارکینگ به معنای پنهان کردن داده در تصاویر است به نحوی که با چشم قابل تشخیص نباشد و فقط افراد مجاز قادر به استخراج این اده ها باشند در ضمن سیگنال واترمارک در اثر پردازشهای معمول بر روی تصویر از بین نرود . واتر مارکینگ کاربردهای گوناگونی دارد که مهم ترین کاربرد آن همان طور که گفته شد حفظ حق کپی رایت است. از کاربردهای دیگر آن می توان به ردیابی شخص خائن اشاره کرد. واترمارک عبارت است از توانایی حمل اطلاعات جهت احراز هویت یا کدهای احراز هویت یا علائم اختصاری ضروری جهت تفسیر تصویر ، این توانایی جهت پیدا کردن کاربردی در بر چسب گذاری تصویر ، انجام کپی رایت ، حفاظت از جعل کردن و دستیابی کنترل شده می باشد. Water mark پردازش رمزگذاری مخفیانه اطلاعات کپی رایت در یک تصویر می باشد که این کار با تغییرات کوچک نشانه گذاری (مهر گذاشتن) در محتوای هر سلول تصویری صورت می گیرد . رمز گذاری محتویات را در طول انتقال داده از فرستنده به گوینده محافظت می کند اما سایه گذاری دیجیتالی دسترسی به اطلاعات تصویر را محدود نمی کند . دیجیتال و اترمارک در موارد زیادی کاربرد دارد. ‌(3 و 2)
2- کاربردهای دیجیتال و اترمارک:
1) حفاظت از کپی رایت:
امکان قرار دادن اطلاعات کپی رایت در محتوای فایل مانند نمایش اطلاعات درباره سازنده آن انتشار اخطار درباره استفاده غیر مجاز . (3) می توان واترمارکینگ را همراه با رمزنگاری برای آدرس دهی بعضی موضوعات مهم در محافظت از کپی رایت استفاده کرد. این موضوعات مهم شامل تعیین هویت فروشنده – خریدار ، تخلف از کپی رایت و تایید مالکیت است. تعیین هویت فروشنده – خریدار را استخراج واترمارک موفق در کاربر، هویت فروشنده و خریدار تصویر واترمارک شده را مشخص می کند . در رابطه با شناسایی خریدار فروشنده منظور ما این است که یک استخراج علامت گذاری شده موفق از جانب خریدار ، هویت خریدار و فروشنده تصویر علامت گذاری شده را آشکار خواهد ساخت در رابطه با تخلف از کپی رایت موضوع مطرح شده فروشنده را قادر خواهد ساخت خریدار معین را از کسی که منشاء یک کپی غیر قانونی از تصویر علامت گذاری شده بود، است تمیز دهد و در آینده این حقیقت را به یک طرف ثالث اثبات کند. منظور از تایید مالکیت این است که فروشنده تصویر علامت گذاری شده باید بتواند مالکیت حقیقی خود را در صورت وجود چندین ادعای تملک ثابت نماید سؤالی که مطرح می شود این است که ما چگونه می توانیم برخی اطلاعات (یعنی یک علامت) را با شخص خاصی مرتبط سازیم
برایبر طرف کردن این مشکل ، ما هویت خریداری فروشنده را با زوج کلید عمومی خصوصی مرتبط ساخته ایم. در یک موقعیت جهان واقعی زیر ساخت کلید عمومی (PKI) چارچوبی را فراهم می سازد که در آن یک زوج کلید عمومی – خصوصی با هویت فرد مربوط می شود. به طور مثال با صدور گواهی نامه های خصوصی و امضاهای دیجیتالی استفاده می کنیم تا هویت خریدار – فروشنده را با تصویر علامت گذاری شده پیوند دهد. این روش به فروشنده امکان می دهد تا خریدار مشخص را از کسی که منشاء یک کپی غیر قانونی از تصویر علامت گذاری شده پیوند دهد. این روش به فروشنده امکان می دهد تا خریدار مشخص را از کسی که منشا یک کپی غیر قانونی از تصویر علامت گذاری شده بوده است . تمیز دهد و در آینده این حقیقت را به یک طرف ثالث اثبات کند. این روش در مقابل دست بردن در تصویر اولیه ، مهر و موم زمان یا علامتگذاری ها مقاوم است . امنیت رمزگذاری تابع hash و سیستم رمزگذاری کلید عمومی RSA متضمن امنیت شمای علامتگذاری در مقابل چنین حمله هایی است . هر چند تکنیک طیف گسترده که ما برای جداسازی علامت خصوصی به کار گرفته ایم کاملاً توانمند است اما در هر حال یک تکنیک غیر ناپیدا محسوب می شود. به طور مثال ، در مورد تخلف کپی رایت و تایید مالکیت ، از فروشنده قانونی خواسته می شود تا برای رفع مناقشه تصویر اولیه را ارائه نماید. با توجه به اینکه این شیوه به صورت بالقوه باعث تکنیک علامت گذاری ناپیدا راه حل مناسبی برای استخراج علامت گذاری خصوصی به نظر می رسد (5)
2) سندیت (بدن نقص) :
قراردادن اطلاعات مربوط به احراز هویت یا سندیت اطلاعات مانند استفاده از اطلاعات به عنوان رمز ورود و ذخیره کردن اطلاعات شخصی که مورد نیاز ecomerce است. مشابه کلیدهای عمومی و خصوصی (3) انتظار می رود که کاربردهای کپی رایت ، توسط کاربردهایی مانند کنترل وسیع و ردیابی محتوای توزیع شده در همکاریها تحت شعاع قرار گیرد. همچنین ما انواعی از کاربردها را می بینیم که ارزش را به وسیلة اضافه تکنیک های اخیر در اتصال با تشخیص دهنده های چند واحدی به کار می روند. اثر انگشت یکی از این تشخیص دهنده هاست که برای تشخیص شخص به کار می رود. Ratha متدی را معرفی کرد که برای تصویرهای اثر انگشت بسیار کوچک به نظر می رسد. Jain نیز اطلاعات ظاهری را برای تصدیق تصویر اثر انگشت به کاربرد. مقداری از ضرایب در پیکسل تصویر اثر انگشت انتخاب شده محصور می شود. مرحلة محصور کردن در محدودة فضایی است و نیاز به تصویر اولیه برای استخراج واتر مارک ندارد.
این قسمت واترمارک دیجیتال را با استفاده از اطلاعات ظاهری و آماری برای تغییر زنجیرة حفاظتی و محافظت از تصاویر اثر انگشت به کار می برد. واترمارک ها، در منطقة انتخاب شدة تصویر اثر انگشت ، با استفاده از جابجایی مجزای امواج کوچک محصور شده اند. نتایج نشان می دهد که تغییر در این مکان ها جزئی است و جزئیات را نگهداری می کند. صحت تصویر اثر انگشت از طریق امتیازات تطابقی بالای بدست آمده از سیستم تشخیص اتوماتیک اثر انگشت تصدیق می شود. همچنین میزان زیادی ارتباط دیداری بین تصاویر محصور شده و تصاویر استخراج ساده وجود دارد. میزان شباهت بر پایه واحد پیکسل و واحد دید انسان محاسبه می شود نتایج همچنین نشان می دهد که اثر انگشت پیشنهادی و تصاویر استخراج شده نسبت به حملات معمول مانند فشار و صدا ارتجاعی است (10)
دو روش مکانی برای داده های واترمارک تعبیه شده داخل تصاویر اثر انگشت بدون از بین بردن خصوصیاتش وجود دارد . اولین روش، داده های واترمارک را بعد از خارج کردن خصوصیات آن قرار می دهد ، بدین گونه که ، واترمارکینگ جلوگیری کننده این روش یک تکنیک تطبیقی تصویر را استفاده می کند که برای واترمارک های با قابلیت مشاهده جزئی نتیجه می دهد.
این روش برای واتر مارکینگ تصاویر رنگی استفاده می شود. دربارة تصاویر رنگی به وسیة استفاده از دو خصوصیات انحراف معیار و اندازه گیران ناحیه های تصویر در واتر مارک جاسازی شده و به وسیلة کنترل پردازش واترمارک جاسازی شده برای رمزگشایی صحیح کارایی رمزگشایی داده های واترمارک افزایش داده شده است، مخصوصاً برای تصاویر شلوغ و به هم بافته. واترمارک های جاسازی شده غیر قابل مشاهده هستند این نشان می دهد که تصویر روی رمز گشایی داده های واترمارک تاثیر زیادی ندارد.
روش دوم یک تکنیک واترمارک تطبیقی خاص را برای اثر انگشت مطرح می کند. بنابر این قبل از استخراج خصوصیات قابل اجرا است. برای هر دو روش ، رمزگشایی به تصویر اثر انگشت اصلی نیاز ندارد. برخلاف بیشتر روشهای واترمارکینگ مکانی این روش دقت رمز گشایی بالایی را برای تصاویر اثر انگشت فراهم می کند. همچنین پنهان کاری داده ها و انجام رمزگشایی شمای واترمارکینگ قادر به استقامت در برابر جملات مانند transcoding فیلترنیگ و حتی حملات geometric (در قسمتهای بعد این مقاله روشهایی برای تحریف Geometric ارائه خواهیم کرد)
البته به شرطی که متدهای برگشت پذیر این حملات ثبت شده باشد این روش علاوه بر اینکه برای حفاظت از کپی رایت مناسب است بار محاسباتی آن ناچیز است و در کاربردهایی مانند نظارت broadcast نیز مناسب است.(V)
3) ارتباط امن و غیر قابل رؤیت:
در کاربردهایی که فایل ها از طریق attachment های e-mail منتقل شده و یا محل هایی ذخیره می شوند که قابل دسترسی عموم می باشند.
4) بر چسب گذاری و حاشیه نویسی مخفی:
مانند درج شمارة شناسایی (3D)، کلمات کلیدی برای جستجوی اطلاعات و خصوصیات فایل
5) نمایش برچسب:
در مواردی که کاربر مایل می باشد که نام صاحب یا سازنده توسط تمامی کاربران اعم از کاربران مجاز و غیر مجاز رویت شود.
6) ایجاد شرایط دسترسی به تصویر:
به کمک تکنیکهای واترمارک می توان افرادی را که می توانند تصاویر خاصی را رویت نمایند(مستقل از اینکه تصویر در اختیار چه کسی است) محدود نمود.
7) حفاظت از داده در مقابل نوذگران شبکه:
با ذخیره سازی اطلاعات به صورت واترمارک شده حتی اگر نفوذگران شبکه به اطلاعات دسترسی پیدا کنند امکان سود استفاده از تصاویر و یا اطلاعات وجود ندارد.
8) واترمارک در تجارت:
با گذشت زمان با توجه به اهمیت و گسترش رسانه های دیجیتالی ، تکنولوژی تجارت الکترونیک به وجود آمد. و در این راستا تکنولوژی دیجیتال واترمارک نیز گسترش یافت (3) از آن جا که تصاویر ذیجیتالی می توانند به آسانی مورد تغییر و حمله و کاربردها توانایی آشکارسازی این تغییرات بسیار مهم است. مثلاً در تجارت الکترونیک زمانی که یک خریدار تصویری را از فروشنده ای خریداری می کند فروشنده تصویر را توسط شبکه ای برای خریدار ارسال می کند، در این حال خریداری می خواهد مطمئن شود که تصویری که دریافت کرده است همان است که توسط فروشنده فرستاده شده است یا نه؟(12)
Digital Watermarking یک تکنولوژی مناسب برای برطرف کردن مشکلات امنیتی است که این مشکلات به وسیلة روش های رمزنگاری رایج حل نمی شد. برای فراهم آوردن امنیت در یک فرآیند چند رسانه ای نیاز به برسد سطح امنیتی داریم: ارتباط مطمئن دامن، کنترل نحوة استفاده و دسترسی (کنترل چگونگی استفاده از فرآیند) مدارک و ابزار لازم جهت پیگیری استفادة غیر قانونی که این موارد مکملی برای حفاظت از کلیة قسمت های بکار گرفته شده در یک فرآیند تجارت چند رسانه ای می باشد و Digital Watermarking مدارک لازم و قابلیت پیگیری برای کپی های غیر قانونی و هم چنین توزیع اطلاعات چند رسانه ها را فراهم می کنند.
9)پایگاه داده ها و واترمارک:
یکی از مهمترین اطلاعاتی که در شبکه های مختلف به خصوص اینترنت روزانه با با حجم زیادی در حال انتقال می باشد، اطلاعات پایگاه داده ای و جداول اطلاعاتی می باشد که حفاظت آنها به خصوص در مواردی که این اطلاعات ، اطلاعات مالی می باشند ، از اهمیت خاصی برخوردار است. یکی از روش هایی که در این زمینه می تواند مؤثر واقع شود دیجیتال واترمارک است. اعمال واترمارک در بانک های اطلاعاتی به دو صورت امکان پذیر است:
1- اضافه کردن اطلاعات به کل فایل با توجه به روش های موجود برای واترمارک
2- اضافه کردن اطلاعات به هر دو رکورد داده یا به رکوردهای خاص (3)
10) کاربرد واترمارک در سیستم عامل:
یکی دیگر از کاربرد های Watermark استفاده از یک تکنیک در ساختار سیستم عامل ها می باشد . با عامال واترمارک در قسمت های مختلف سیتم عامل از قبل نحوة ذخیره سازی سیستم فایل ها می توان به سیستم عامل منحصر به فردی رسید که قابلیت های خاص داشته باشد هم چنین می توان برای احراز هویت کاربران نیز از این روش ها استفاده کرد. در این گونه کاربردها watermark به صورت یک Component در داخل سیستم عامل نصب می شود.
11) کاربردهای غیر تصویری واترمارک:
واترمارک در صورت نیز می تواند به دو صورت قابل شنیدن و غیر قابل شنیدن اعمال شود. هم چنین در تصاویر متحرک نیز می توان از واترمارک استفاده کرد. این روش می تواند در محیط های فعال (متحرک) مانند ویدئونیز اجرا شود.(3)
واترمارکینک صوتی عمدتاً برای صدای دیجیتال مورد استفاده قرار گرفته است که ما دامنة کاربردهای آن را به اجراهای زنده با یک شیوة ترکیبی جدید برای واترمارکینک صوتی زمان حقیقی توسعه داده ایم. واترمارکینک صوتی صدای سیگنال علامت را با صدای میزبان در هوا ترکیب می کند تا ضبط های غیر قانونی موسیقی را از آنچه در تالار اجرای موسیقی ضبط شده است تشخیص دهد. که یک الگوریتم واترمارکینگ شنیداری برای واترمارکینگ صوتی پیشنهاد شده است که مقدار سیگنال میزبان را فقط در نواحی جداسازی شده ای افزایش می دهد که در سطح تراز کانس – زمان به صورت شبه تصادفی انتخاب شده اند . نتیجه یک آزمون شنیداری فردی MUSHRA نشان داد که کیفیت شنوایی در این روش در محدودة کیفیت عالی قرار دارد. توانمندی این شیوه بستگی به نوع نمونه های موسیقی دارد. برای موسیقی پاپ واکسترها یک واترمارکینگ را می توان به صورت ثابت از نمونه های موسیقی هایی شناسایی کرد که از نظر صوتی ماترمارکینگ شده و سپس در یک فایل سه لایه MPEGI فشرده سازی گردیده اند(6)
یک روش واترمارکینگ صوتی هوشمند جدید بر پایة HAS تکنیک شبکه های عصبی در ناحیة DCT پیشنهاد شده است این روش واترمارک را به وسیلة استفاده از مشخصات ماسکینگ صوتی HAS غیر قابل مشاهده می کند. به علاوه این روش یک شبکه عصبی را برای حفظ کردن رابطة بین سیگنال های صوتی اصلی و سیگنال های صوتی ماترمارک شده به کار می گیرد. بنابر این این روش می تواند واترمارک ها را بدون سیگنال های صوتی اصلی استخراج کند. سرانجام نتایج آزمایش ، توضیح می دهد که این روش به طور عمده دارای این قدرت است که در مقابل حملات عمومی برای حفاظت حق چاپ از صوت های دیجیتالی ایستادگی کند (89
12) واترمارک در امضای کور:
کورکردن امضای دیجیتالی براحتی توسط روش های مختلف در مارترمارک های غیر قابل رویت امکان پذیر است. 039
3- دسته بندی تکنیگ های واترمارک و یک طرح جدید برای واتر مارکینگ دیجیتال بر پایه آنالیز طیفی کنیک های واترمارکینگ می تواند در دو دسته تقسیم بندی شود:
روش محدودة فضایی و روش محدودة جابجایی.
روش اول پیچیدگی کمتری دارد زیرا هیچ جابجایی به کار نمی رود اما در برابر مشکلات قوی تر است و این به علت است که وقتی تصویر معکوس است چاپ موجی کوچک به طور نامنظم در تصویر توزیع می شود که خواندن یا تغییر را سخت تر می کند. در میان تکنیک های محدودة جابجایی ، جابجایی مجزای موج کوچک (QWT9 به خاطر اینکه فواید بیشتری نسبت به بقیة جابجایی ها دارد محبوبیت بیشتری نسبت به بقیة جابه جایی موج کوچک برای کاربردهای واترکینک موثر است(9)
قبلاً در مورد داده های واترمارک شده که در برابر حملات geometric قرار می گیرند گفته شد اکنون می بینیم دو روش که برای تحریف های geometric قوی هستند وجود دارد . اولین روش بر پایة نرمال شدن تصویر است که در آن موانع و استخراج واترکینگ با توجه به یک تصویر نرمال شده انجام می شود تا یک سری از اصول لحظه ای از پیش تعریف شده را داشته باشد. در بین روش بر پایة طرح یک شبکه قابل تحریف برای اصلاح خرابی های به وجود آمده ، طرح دوم برای کاربردهای خصوصی مناسب واترمارکینگ لازم است . (4)
سعی بر آنست که یک طرح جدید برای واترمارکینگ دیجیتال بر پایة انالیز طیفی به وجود آوریم با گسترش الگوریتم موجود مترها ، برای مدل های اسکن شده مناسب می باشد جایی که واترکینگ می تواند به طور مستقیم در اطلاعات خام بدست آمده از وسیلة سه بعدی محصور شود، برای اینکه با اطلاعات زیاد به طور کارا مواجه شویم یک الگریتم ترتیبی سریع را به کار می بریم که مدل را به یک سری از اجزا قسمت بندی می کند. هر قسمت در فضای کاربرد مناسب اپراتور Laplacian مقدار می گیرد تا یک تجزیه از سطح اجزا در باند فرکانس مجزا بدست آورد. واترمارکینگ سپس در اجزای فرکانس پایین محصور می شود تا مصنوعات تصویری را در مدل geometric (ژئومتری) کوچک کند. در طول استخراج مدل هدف در تجزیة نهایی با استفاده از فرکانس MLS الگوسازی می شود. بعد از استخراج یک واترمارکینگ از این مدل ، جریان قطعات با استفاده از متودهای آماری برپایه ارتباط آن ها آنالیز می شود، آزمایشات نشان می دهد که طرح در مقابل تهجمات متعدد قوی است (11)
4- پارامترهایی که باید در واترمارکینگ در نظر گرفته شوند :
در واترمارکینگباید پارامترهایی همچون شفافیت ، مقاومت و ظرفیت در نظر گرفته شود که در این میان شفافیت نقش اصلی را ایفا می کند. برای حفظ شفافیت می بایست پس از درج واترمارک ، نتوان تصویر وارترمارک شده را از روی تصویر اصلی تشخیص داد.
برای مقاوم بودن نیز باید دامنه داده هایی که وارد می شود بزرگ باشد و این موضوع باعث محسوس شدن واترمارک می شود. با توجه به رابطه معکوس بین پایداری و نامحسوس بودن، باید تعادلی را میان این دو نظر گرفت . منظور از مقاوم بودن این است که سیگنال واترمارکی که صحت داده میزبان را اثبات می کند، در برابر تکنیکهای پردازش تصویر از قبیل فشرده سازی ، فیلترنیگ و ... مقاوم باشد.
می توان مقدار محدودی اطلاعات را در یک تصویر پنهان کرد، اندازة این مقدار بستگی به نوع و روش واترمارکینگ دارد و نشان دهنده ظرفیت است. مقدار اطلاعات باید به اندازه ای باشد که اولاً از کیفیت تصویر ن؟ و ثانیاً در مقابل یک سری فرایندهای پردازش تصویر دوام داشته باشد.
بنابر این ظرفیت و مقاومت رابطة عکس بر قرار است ، بدین ترتیب که هر چه ظرفیت بالاتر رود از مقاومت کاسته می شود. در ادامه روشهای مختلف واترمارکینگ مورد بررسی قرار می گیرد.
• انجام عمل در حوزة فرکانس یا حوزة زمان
• استخراج واترمارک به کمک عکس اصلی و یا بدون کمک آن
• نوع واترمارک (Logo رشته شبه نویز و یا دیگر انواع اطلاعات)
• حوزة کاربرد.
در روشهای حوزة مکان پنهان سازی اطلاعات صرفا توسط شدت روشنایی نقاط تصویر انجام می شود. این روشها الگوریتم سادهای دارند.یکی از معروفترین روشهای حوزه مکان روش LSB است که در آن اطلاعات برروی بیت های کم ارزش درج میشود. مهمترین خصوصیت این روش شفافیت آن است ولی مقاومت آن در برابر تکنیکهای پردازش تصویر کم است . در تکنیکهای درج می شوند که ارزش بیشتری داشته باشند. پس این روشها در برابر پردازش تصویر مقاومتر هستند. این روشها الگوریتمهای پیچیده و محاسبات بیشتری نسبت به حوزه مکان نیاز دارند. و معمولاً از تبدیلهای DFT , DCT و تبدیل DWT و تبدیل والش استفاده می شوند . که در این جا از تبدیل ها دامارد در حوزة DCT استفاده می شود (2)
5- مدولاسیون FSK دو بعدی در واترمارکینگ تصویر
ایده مدولاسیون FSK دو بعدی از اینجا نشات می گیرد که انرژی سیگنال واترمارک بجای گسترش در کل طیف تصویر ، در نقاطی از طیف متمرکز گردد که کمترین تداخل و شباهت با سیگنال میزبان ، بیشترین شفافیت در اثر اضافه شدن به سیگنال تصویر و نیز کمترین شباهت را با یکدیگر داشته باشند. توجه داریم که طراحی و ساخت پترن ها در این الگوریتم با توجه به فرکانس انجام می گیرد تا جاسازی پترن ها در طیف سیگنال میزبان از نظر فرکانسی معنی دار بوده و موقعیت پترن در حوزه فرکانس قابل تغییر و تنظیم باشد بنابر این پترن ها در نظر گرفته شده ، تصاویر دو بعدی بدست آمده از نویز تصادفی نیستند. شکل (1) ایده مورد نظر بصورت موقعیت دو پترن طراحی شده (fi , fo) در حوزه فرکانس نسبت به طیف سیگنال تصویر بعنوان میزبان نشان می دهد. الگوریتم واترمارکینگ طیف گسترده پترن ها را بصورت محلی در حوالی فرکانسهای هر پترن گسترش می دهد. با توجه به خصوصیات فوق دو گونه رایج از پترن ها می توان طراحی کرد. 1- پترن های کسینوسی 2- پترن های هادامارد. که از تبدیلات دو بعدی متناظر بدست می آیند. پترن های هادمارد بدلیل داشتن مقادیر صحیح 1+_ برای پردازش سیگنال های دیجیتال مناسب تر بوده است و نیز همانند دنباله های شبه نویز دو سطحی در واترمارکینگ می توان با آنها رفتار کرد. مهمتر از همه اینکه تولید آنها راحت تر است. بنابر این ما در این مقاله از مدولاتور پترن هادمارد بعنوان واحد مدولاتور FSK استفاده می کنیم.
ساده ترین ماتریس هادامارد یک بعدی از مرتبه دو بوده و بصورت زیر نوشته می شود.
؟
و هر ماتریس دیگر از مرتبه توانی از دو بکمک ضرب کرانچر و از رابطه زیر بدست می آید.
؟
سطرهای HN در رابطه فوق بر اساس ترتیب فرکانسی مرتب شده و تصاویر (توابع) پایه دو بعدی N * N در تبدیل هاردامارد بصورت زیر بدست می آیند.
؟
شکل (2) پترن های بدست آمده از تبدیل هادامارد را بر اساس ترتیب فرکانسی برای N=8 نشان می دهد. هر پترن دو بعدی از مجموعه فوق به همراه Biorthogonal آن می تواند به عنوان سیگنال حاوی اطلاعات برای جاسازی اطلاعات باینری در مدولاتور FSK مورد استفاده قرار گیرد. در این مقاله ما از پترن هایی با اندازه N=8 جهت هماهنگی با تبدیل DCT8*8 استفاده کرده ایم . انتخاب N بزرگتر موجب افزایش مقاومت الگوریتم و کاهش ظرفیت سیستم برای جاسازی اطلاعات می شود.
6- اگوریتم جاسازی و استخراج واترمارک
6-1- جاسازی واترمارک
فرض کنیم که I تصویر اصلی با اندازه N1 * N2 و ؟ شبکه تبدیل DCTN * N آن باشد آنجایی که هر پترن N*N نماینده یک بیت واترمارک است، بنابر این ؟ بیت را می توان در یک شبکه جاسازی کرد. اگر ؟ مشخص کننده پترن های انتخاب شده باشند و واترمارک باینری را با ؟ نشان داده و بلوکهای DCT در شبکه X بصورت زیر نوشته شوند:
5) ؟
الگوریتم جاسازی به این صورت است که ابتدا پترن های طراحی شده به تصویر خاکستری تبدیل شده و رابطه واترمارکینگ به صورت زیر نوشته می شود:
؟
6) ؟
که ؟ تابع ماسک HVS مبتنی بر DCT در هر بلوک ؟ است که در بخش (5) توضیح داده می شود و ؟ ماسک انتخاب ضرایب DCT در تمامی بلوکهاست. ؟ ضرایب تبدیل DCT تصویر واترمارک شده است. در حقیقت روابط فوق بیان می دارد که بلوکها تصویر میزبان بصورت محلی بر اساس مقدار باینری اندیس متناظر در سیگنال واترمارک با یکی از دو پترن دو بعدی تزویج می شوند. در این مقاله ضرایب انتخاب شده بصورت شکل (3) انتخاب شده است.
در این ماسک فرکانس های میانی جهت مصالحه بین کیفیت بینایی واترمارک شده و مقاومت الگوریتم برای جاسازی انتخاب شده اند. تصویر واترمارک شده با تبدیل DCTN*N معکوس در هر بلوک بدست می آید ؟ پارامتر کنترل تزویج واترمارک جهت مصالحه بین کیفیت تصویر واترمارک شده و قوت الگوریتم است.
6-2- استخراج واترمارک با استفاده از پترن منطبق
آشکارساز پترن منطبق از این خاصیت استفاده می کند که تصویر اصلی میزبان کمترین شباهت را با پترن های طراحی شده دارد در واقع سیگنال تصویر اصلی در دکور بصورت نویز تداخلی مدل می شود. برای تصویر مورد نظر I جهت استخراج واترمارک بصورت bilind ابتدا بلوکی N*N از تصویر محاسبه می شود. در هر بلوک کرولیتور خطی سپس یک مرحله تصمیم گیری بیت واترمارک در موقعیت ؟ را بصورت زیر استخراج می کند:

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله    13صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله دیجیتال واترمارک

پاورپوینت درباره معماری دیجیتال و هوشمند+ 10 مقاله کنفرانسی

اختصاصی از سورنا فایل پاورپوینت درباره معماری دیجیتال و هوشمند+ 10 مقاله کنفرانسی دانلود با لینک مستقیم و پر سرعت .

پاورپوینت درباره معماری دیجیتال و هوشمند+ 10 مقاله کنفرانسی


پاورپوینت درباره معماری دیجیتال و هوشمند+ 10 مقاله کنفرانسی

پس از مقدمه و تعاریف درباره معماری دیجیتال و هوشمند ، مصالح هوشمند ، مزیتها ویژگی ها انواع مدل های طراحی و مقایسه آن باروش متداول در طراحی و نتیجه گیری می پردازد  پاورپوینت در25 صفحه وهمراه با 10 مقاله کنفرانسی در این باره


دانلود با لینک مستقیم


پاورپوینت درباره معماری دیجیتال و هوشمند+ 10 مقاله کنفرانسی

دانلودمقاله مروری گذرا بر تاریخچه تلویزیون دیجیتال و مزایای آن

اختصاصی از سورنا فایل دانلودمقاله مروری گذرا بر تاریخچه تلویزیون دیجیتال و مزایای آن دانلود با لینک مستقیم و پر سرعت .

 

 

 
1- سخن آغازین
«تلویزیون دیجیتال» عبارتی ست که در چند سال اخیر در مجامع کارشناسی جهانی و سمینارهای تخصصی در حوزه های مخابرات و پخش تلویزیونی در سطحی گسترده مطرح شده است، اما این عبارت واقعا چیست و اشاره به کدام فن آوری دارد؟ این تلویزیون چه تفاوت مهمی با تلویزیون موجود فعلی (آنالوگ) دارد؟ چه نیازی برای حرکت به سمت آن احساس می شود؟ آیا واقعاً برای ما یک مفهوم بدیع و ناشناخته است؟ راستی، آیا تا کنون تصاویر دریافتی از گیرنده های ماهواره ای دیجیتال را بر صفحه ی تلویزیون های خانگی دیده اید؟ میزان شفافیت، وضوح، خالی از نویز و برفک بودن این تصاویر چه قدر رضایت بخش است؟ به راستی رمز رسیدن به این درجه از کیفیت تصویری چیست؟ این ها سؤالاتی هستند که امیدواریم در صفحات بعدی به آن ها پاسخ مناسبی داده شود.
شصت سال پس از تولد و معرفی تلویزیون آنالوگ (در ابتدا سیاه و سفید) و سی سال پس از تولد و ظهور رنگ در تصاویر تلویزیونی، «تلویزیون» در آستانه ی یک مهاجرت و حرکت بنیادی قرار گرفت : گذار و انتقال از تلویزیون آنالوگ به تلویزیون دیجیتال.
اما چرا دیجیتال را انتخاب کرده ایم؟ شاید این سیر تکاملی و جایگزین شدن تلویزیون دیجیتال به جای آنالوگ، یادآور تکراری باشد که در برخی از رویدادهای تاریخ رخ می دهد! هنگامی که یونانیان باستان به رهبری اسکندر بر مصر مسلط شدند، به تدریج زبان و الفبای یونانی جایگزین زبان مصر باستان گشت و از سویی زبان هیروگیلف ناپدید شد. تنها پس از کشفیات و حفاری های باستان شناسی دو هزار سال بعد (در سال 1799) این خط باستانی مجدداً آشکار شد. یک پاسخ احتمالی برای علت ناپدید شدن آن شاید این باشد : در حالی که در خط و نگارش مصر باستان از هفتصد نشانه ی نمادین متفاوت برای بیان مفاهیم استفاده می شد، نگارش یونانی بر مبنای الف با شکل گرفته بود. به عبارتی، استفاده از تعدادی نماد محدود و معین که وظیفه ی بیان تمام مفاهیم زبانی را بر عهده دارند.
سیستم آنالوگ درواقع نوعی هیروگلیف الکترونیکی است! برای مثال، یک شکل موج جریان الکتریکی متناظر با یک موج صوتی ست و با تغییر فشار صوتی، شکل موج نیز کاملا دگرگون خواهد شد. در مقابل، سیستم دیجیتال از امتیاز استفاده از کدهای سمبولیک دقیق (نظیر حروف الفبا) برای نمایش هر کدام از شکل موج های متغیر تصویر و صدای آنالوگ (نظیر شکل های هیروگلیف) بهره می برد. طبیعتاً هنگامی که ارسال اطلاعات از فرستنده یا کدکننده، با تعداد سمبل های محدود و معین انجام شود، در صورت بروز خطا در سیگنال، گیرنده یا کدگشا باز هم می تواند به کار خود ادامه دهد، به ویژه چنانچه از ابتدا کدهای ویژه ای به همراه سیگنال اصلی ارسل گردند، گیرنده می تواند خطا را کشف و حتی تصحیح کند. برای مثال، در یک گیرنده ی تلویزیون آنالوگ، چنانچه به دلیل جرقه های موتور یک اتومبیل یک جریان پالسی مزاحم در سیگنال دریافتی از آنتن تداخل کند، چون گیرنده ی آنالوگ قادر به شناخت و جداسازی این قبیل سیگنال های ناخواسته از سیگنال دریافتی نیست، پالس های تداخلی به صورت نقاط پراکنده ی سیاه و سفید بر صفحه ی لامپ تصویر ظاهر می شوند. در حالی که در پردازش دیجیتال، امکان شناخت سیگنال های ناخواسته و حذف خطای مزاحم وجود دارد و به همین دلیل تصاویر دریافتی شفاف تر و خالی از نویز هستند.
در شرایطی که جهان وارد قرن بیست و یکم شده، تلویزیون دیجیتال یکی از اجزاء مهم بزرگ راه های اطلاعاتی برشمرده می شود. زیرا این فن آوری، قابلیت ارسال مقادیر فراوانی از اطلاعات را به بیشترین تعداد کاربر با هزینه ی کم داراست. تلویزیون دیجیتال، با تبدیل تصاویر و صدا به مقادیر و کدهای دودویی (0و1) چنین قابلیتی را یافته است.
اینک برنامه های تلویزیونی (شامل تصاویر و صدا) که در حالت اولیه ی خود به قالب آنالوگ هستند، دیجیتال شده و پس از ترکیب با اطلاعات و داده های دیگر از طریق شبکه های مخابراتی به ایستگاه های فرستنده ی پخش امواج ارسال می شوند. این برنامه ها هم چنین قابلیت ذخیره شدن ابتدایی بر دیسک سخت کامپیوتر و سپس ارسال را برای بیننده های خاص (دارای حق اشتراک) دارند. امکان فراهم آوری مجموعه ی چند رسانه ای (صدا، تصویر، داده) به عنوان منبع برنامه ی تولید شده، با قابلیت ذخیره سازی حتی در رایانه های خانگی، سبب انقلابی در مقایسه با زنجیره ی مراحل تولید و پخش تلویزیون آنالوگ شده است.
مرور بر مفاهیم پایه : بررسی ساختار یک سیستم مخابرات دیجیتال
از آنجا که تلویزیون دیجیتال، نوعی از سیستم مخابرات دیجیتال است، طبیعتاً از الگوی کلی چنین سیستمی، تبعیت می کند. بنابراین ضروری ست قبل از ادامه ی بحث، در ابتدا تعاریف اولیه را به طور خلاصه مرور کنیم.
؟؟؟؟؟؟؟؟؟؟؟؟؟؟جای شکل
تصویر 1-1 اجزاء اصلی یک سیستم ارتباطی دیجیتال را شامل طبقات فرستنده، گیرنده و هم چنین کانال ارتباطی معرفی می کند.
طبق تصویر، ابتدا منبع اولیه ی اطلاعات که در حالت طبیعی پیوسته است توسط تراگردان ورودی به سیگنال الکتریکی آنالوگ تبدیل می شود، مانند سیگنال ویدیوئی دوربین تلویزیونی یا سیگنال صدای تولید شده توسط میکروفن.
لازم است تا این سیگنال الکتریکی آنالوگ توسط یک مدار A/D از حالت آنالوگ به دیجیتال تبدیل شود، یعنی رشته ای از ارقام دودویی صفر و یک. هم چنین ممکن است که منبع اطلاعات، نظیر داده های مربوط به یک فایل درون حافظه ی رایانه، از ابتدا ذاتا دیجیتال باشد. در هر صورت، به دنبال شکلی از ارائه ی سیگنال دودویی هستیم تا سیگنال با حداکثر بازدهی، بدون زواید و با حداقل تعداد بیت در دسترس قرار گیرد. این همان تعبیر کدگذاری منبع اطلاعات است که طی این فرآیند افزونگی های ذاتی و آماری در سیگنال اولیه حذف می شود. به تعبیر دیگر، این عمل فشرده سازی داده ها نامیده می شود و پردازشی ویژه برای استفاده ی بهینه از پهنای باند فرکانسی کانال ارتباطی ست. طبیعی ست که هر چه حجم داده های تولیدی کم تر باشد، ارسال آن ها با سرعت انتقال کم تر و با اشغال پهنای باند کم تر امکان پذیر است.
سپس سیگنال کد شده در طبقه ی کد گذار یا کد کننده ی منبع وارد طبقه ی کدگذار کانال ارتباطی می شود. این کدکننده برخلاف قبل، به شیوه ای کاملا کنترل شده، داده های جدیدی را به داده های اطلاعات اصلی می افزاید تا به کمک آن ها گیرنده بتواند خطاها و آثار مخرب ناشی از نویز و تداخل های محیطی در سیگنال دریافتی را آشکار و تصحیح کند. بنابراین، کدکننده ی کانال برخلاف کدکننده ی منبع وظیفه ی افزایش افزونگی ها را جهت کنترل و کاهش خطا بر عهده دارد. معمولا به دو روش می توان کنترل خطا را انجام داد : نخست با ارسال دوباره ی پیغام اولیه یا روش ARQ که در این حالت باید حتما یک خط ارتباطی برگشت میان فرستنده و گیرنده موجود باشد تا گیرنده بتواند از فرستنده ارسال دوباره را درخواست کند. در این حالت گیرنده فقط قدرت تشخیص و آشکارسازی خطا را دارد و در عوض فاقد توانایی تصحیح خطاست.
در حالت دوم که هیچ گونه مسیر برگشتی وجود ندارد، تنها امکان کنترل خطا به روش «تصحیح خطای پیش سو» (Forward Error Correction) یا به اختصار FEC است که خود شامل شیوه های گوناگونی ست. در یک روش ساده، اگر تعداد بیت پیغام برابر عدد k باشد، به آن ها تعدادr بیت به عنوان بیتهای وارسی افزوده شده و در کل یک کد – واژه با n بیت ساخته و مجموعه ای n بیتی به مدولاتور ارسال می شود. مدولاتوری دیجیتال در واقع بخش واسطه برای انتقال جریان داده ها به محیط انتشار است. از آنجا که تقریباً تمام محیط های ارتباطی در عمل قابلیت انتقال سیگنال های الکتریکی را فقط به صورت شکل موج های پیوسته دارند، در طبقه ی مدولاتور سیگنال گسسته ی زمانی عملا دوباره به سیگنال پیوسته یا آنالوگ تبدیل می شود تا شرایط مناسب انتشار یابد. درواقع اولین هدف مدولاتور نگاشت یک واحد اطلاعات دودویی به یک شکل موج الکتریکی پیوسته است.
کانال مخابراتی یک محیط یا رسانه ی فیزیکی برای انتقال سیگنال بین فرستنده و گیرنده است. این محیط می تواند محیط بسته (نظیر کابل الکتریکی یا فیبر نوری) یا محیط انتقال باز (نظیر جو و فضای آزاد) باشد. ویژگی معمول کانال ارتباطی این است که سیگنال در ضمن انتقال از طریق آن، تحت تأثیر عوامل فیزیکی از قبیل نویز و تداخل قرار می گیرد و مقداری دچار آسیب می شود.
در سمت دیگر کانال، طبقات گیرنده قرار گرفته که ابتدا توسط یک دِمدولاتور دیجیتالی سیگنال دریافتی از حالت پیوسته به گسسته تبدیل شده و شکل موج آسیب دیده ی سیگنال باز به دنباله ای از داده های دودویی (البته همراه با خطا) تبدیل می شود. سپس همان گونه که اشاره شده، در کدگشای کانال به وسیله ی اطلاعات دریافت شده از فرستنده، همان افزونگی ها، داده ها مجددا بازسازی و ترمیم، و خطاها آشکار گشته و تا حد ممکن تصحیح می شوند. خواهیم دید که میزان متوسط احتمال خطا در بیت که در خروجی کدگشا قابل اندازه گیری ست، پارامتری مهم برای سنجش و معرف میزانی از کیفیت کار مجموعه ی مدولاتور و کدگشا، و به طور کلی گیرنده، است.
در حالت کلی، احتمال خطا تابعی از مشخصه های کد و کدگذاری، نوع شکل موج های ارسال در کانال متناسب با اطلاعات اولیه (نوع مدولاسیون)، قدرت فرستنده و مهم تر از همه ویژگی های کانال (میزان تأثیر نویز و اعوجاج و تداخل) و نیز روش دمدولاسیون و کدگشایی ست.
در آخرین مرحله، کدگشای منبع رشته داده ها را دریافت کرده و با آگاهی از روش کدینگ، داده های اولیه را استخراج و سیگنال پیغام را بازسازی می کند. در شرایط واقعی و غیر ایده آل، به دلیل اعوجاج ناشی از عمل کرد کدکننده های منبع بر سیگنال اولیه در فرستنده و هم چنین خطاهای ناشی از کانال ارتباطی، سیگنال نهایی به دست آمده در خروجی کدگشای منبع در گیرنده، یک سیگنال تقریبی و نزدیک به سیگنال پیغام (و نه دقیقا خود سیگنال) خواهد بود. سرانجام و در صورت لزوم، توسط تراگردان خروجی سیگنال دودویی مجدداً به شکل آنالوگ، یا اصولا حالت غیرالکتریکی، تبدیل می شود.
در ادامه ی بحث و فصل های پیش رو، در زمان لازم درباره ی اجزاء ساختاری یک سیستم مخابرات دیجیتال به صورت دقیق تر و با موشکافی بیشتر گفت و گو خواهیم کرد و هم چنین مصداق های عینی آن را در بحث تلویزیون دیجیتال معرفی و بیان خواهیم کرد.
1-1- معماری اجزاء سیستم تلویزیون دیجیتال
تصویر 1-2 طبقات تشکیل دهنده ی سیستم تلویزیون دیجیتال را از بخش ارسال تا دریافت، به صورت سیمایی کلی و اجمالی، و در عین حال سودمند، نمایش می دهد که بیان گر چگونگی ترتیب فصل های کتاب حاضر در تشریح این سیستم نیز هست.
آشکارست که سیستم تلویزیون دیجیتال مصداقی کاربردی ست از مفهوم کلی سیستم ارتباطی دیجیتال. پس با همان نگاه می توان مختصات و ویژگی های آن را بررسی کرد.
همان گونه که در تصویر پیداست، در اولین طبقه دوربین تصویربرداری ویدئو و میکروفن به عنوان اولین منبع تأمین کننده ی اطلاعات تصویر و صدا به صورت سیگنال الکتریکی آنالوگ و پیوسته، قرار گرفته اند. تا این مرحله همه چیز از اصول تلویزیون آنالوگ پیروی می کند.
؟؟؟؟؟؟؟؟؟؟ جای شکل
در فصل دوم مروری اجمالی بر ماهیت سیگنال صدا و ویدئو و تعاریف آن ها خواهیم داشت.
طبقه ی دوم با تبدیل از حالت آنالوگ به دیجیتال، گذرنامه ی ورود به دنیای دیجیتال ست. در این طبقه هر دو سیگنال صدا و ویدئو از حالت آنالوگ به قالب دیجیتال (یا رشته هایی از صفر و یک) تبدیل می شوند. این تبدیل خود مراحلی دارد که در فصل سوم به تفصیل بیان می شوند.
طبقه ی سوم یکی از بخش های کلیدی در ساختمان تلویزیون دیجیتالی ست که عبارت است از کدکننده های تصویر و صدا. وظیفه ی این طبقه فشرده سازی و کدگذاری اطلاعات تصویر و صدایی که در مرحله ی قبل به صورت ساده دیجیتال شده اند، با الگوریتمی مناسب است. در آینده خواهیم گفت که چرا این کار به منظور کاهش قابل ملاحظه ی پهنای باند فرکانسی ضرورت اساسی دارد. در فصل های چهارم و پنجم به روش های فشرده سازی MPEG می پردازیم.
طبقه ی بعدی از مالتی پلکسر MPEG تشکیل شده که وظیفه ی تلفیق مناسب تمامی اطلاعات قابل ارسال، اعم از صدا و تصویر برنامه های مختلف را به همراه داده ها و دیگر اطلاعات کمکی بر عهده دارد. البته در گیرنده اطلاعات تلفیق شده دوباره جدا می شوند و هر کدام در مسیر درست خود قرار می گیرند. فصل ششم به بحث مفصل در این باره اختصاص دارد.
و اما در بخش مدولاسیون سیگنال تلویزیون دیجیتال و ارسال سیگنال از طریق آنتن یا سایر محیط های انتشار، مانند هر سیستم مخابرات دیجیتال دیگری، موضوعی حائز اهمیت بسیار، حراست و حفاظت از اطلاعات ارسالی برابر هر آسیبی ست که در محیط انتشار ایده آل و عاری از خطایی وجود ندارد، پس ناگزیر هستیم با تمهیداتی سیگنال ارسالی را مقاوم کنیم، طوری که هنگام دریافت در گیرنده، اولا اطلاعات با کم ترین آسیب دریافت شود، ثانیا بتوانیم خطا را کشف و حتی تصحیح کنیم. به همین منظور، طبق تصویر، ابتدا یک نوع کدینگ ویژه به نام خطایاب بر سیگنال اطلاعات تلفیق شده، اعمال می کنیم یا درواقع اطلاعات جدیدی را به آن می افزاییم تا درگیرنده برای بازسازی اطلاعات آسیب دیده از آن ها استفاده کنیم این مسائل نیز در فصل ششم بررسی می شوند.
دیگر نکته ی بسیار مهم، انتخاب نوع مدولاسیون متناسب با محیط انتشار است. طبیعی ست که مدولاسیون انتخابی برای پخش از محیط ایمن کابل نسبت به محیط فضا و ارسال ماهواره ای و محیط پرآسیب و مهارناپذیر مجاور زمین یا به اصطلاح ارسال زمینی کاملا متفاوت است. به موضوع انتقال سیگنال در فصل هفتم می پردازیم.
در نهایت، تمام این تمهیدات برای رساندن سیگنال حاوی تصویر و صدا به بیننده پیده شده است. بنابراین باید چگونگی دریافت مناسب سیگنال تلویزیونی دیجیتال را فراگیریم و به تفاوت واقعی تلویزیون دیجیتال با تلویزیون آنالوگ از دیدگاه بیننده پی ببریم. موضوع عمل کرد دستگاه تبدیل و تطبیق سیگنال دیجیتال به گیرنده ی تلویزیونی آنالوگ را در فصل هشتم بررسی می کنیم.
شناخت تصویر و صدای دیجیتال
1- پیشینه ی سیگنال دیجیتال
قبل از پرداختن به ضرورت های روی آوردن صنعت تلویزیون به مقوله ی پردازش و انتقال ویدئوی دیجیتال در دهه ی 1990، لازم است به برخی نوآوری ها در این صنعت در اواخر دهه ی 1970 و اوائل دهه ی 1980 نگاهی بیندازیم.
اولین نکته ی مهم این است که سیستم های تلویزیونی PAL , NTSC که در فصل قبل به آنها اشاره کردیم، اساسا به عنوان استانداردهایی برای ارسال و انتقال تعریف شدند نه به عنوان استانداردهایی برای تولید برنامه ی ویدئویی.
همان گونه که ماهیت سیگنال های PAL , NTSC را شناختیم، می دانیم که در این دو نوع سیگنال ویدئویی، مؤلفه های فرکانس بالای مربوط به روشنایی تصویر معرف جزئیات بافت تصویری هستند. از سوی دیگر، همواره این احتمال وجود دارد که این اطلاعات فرکانس بالا، در گیرنده به صورتی نادرست به اطلاعات رنگ تفسیر و تبدیل شوند.
این اثر تداخل رنگ نامیده می شود و نتیجه اش به جزء ثابتی از اشکالات تصاویر دریافتی تلویزیونی تبدیل شده و گویی به صورت همیشگی تصاویر را به اشغال خود درآورده است. چنان که گفته شد، استانداردهای PAL , NTSC متعلق به سیگنال ویدئویی مرکب هستند که در آن تمام اطلاعات روشنایی، رنگ و پالس های هم زمانی در یک سیگنال واحد جمع شده اند و نوع استاندارد، بیان گر چگونگی جمع شدن این مؤلفه ها با یکدیگر است.
گفتیم که نوع دیگری از ارائه ی سیگنال ویدئویی به صورت سیگنال مجزا و منفک است که در آن مؤلفه های روشنایی (Y) و رنگ( شامل مؤلفه های Cb , Cr ) به صورت سه سیگنال الکتریکی مجزا و همزمان تولید می شوند یا در حالت سوم، سیگنال ویدئویی به صورت کاملا تفکیک شده فقط با عناصر رنگی قرمز (R)، سبز (G) و آبی (B) تولید و ارائه می گردد. در هر حال، شاید به دلیل هزینه ی زیاد تجهیزاتی که کار پردازش سیگنال ویدئویی مجزا را در سه سطح بر عهده داشتند (نظیر دستگاه های سوئیچ کننده یا میکسر)، در ابتدا سیگنال ویدئویی به صورت مرکب با استانداردهای PAL , NTSC ، به عنوان مبنا در تولید برنامه ی ویدئویی قرار گرفت. صرف نظر از مقوله ی هزینه، از منظر فنی کار کردن با سه سیگنال به طور همزمان و همسان سازی آنها از نظر دامنه و هم چنین ثابت نگهداشتن تأخیر زمانی ناشی از انتقال سیگنال ها، در زمان های طولانی کاری بسیار مشکل است.
بنابر اغلب سیستم هایی که با ویدئوی مؤلفه ای کار می کنند، به طور خاص از تغییرات تدریجی محتوای رنگی تصاویر گریزی ندارند و تأثیر منفی می گیرند. با این حال، با توسعه و پیشرفت فن آوری آنالوگ در استفاده از مدارهای مجتمع الکترونیکی، صنایع الکترونیک به تولید تجهیزات تلویزیونی متناسب با سیگنال مجزا رو آورد. همراه با پردازش جداگانه ی سیگنال روشنایی (Y) و مؤلفه های رنگی (R-Y) و (B-Y)، طراحان گرافیک محرک نیروی پیشران اصلی برای رسیدن به این دست آوردها شدند، زیرا دریافتند که کار با سیگنال های ویدئویی مرکب منجر به کیفیت ضعیف تصاویر می گردد. دو نیاز اصلی طراحان گرافیک، یکی کار با تصاویر دارای جزئیات متنی زیاد و دیگری استفاده از تصاویر با رنگ های اشباع شده، با سیگنال مرکب براورده نمی شد، زیرا نیاز اول منجر به تداخل رنگی می گشت و تأمین نیاز دوم در عمل امکان پذیر نبود (به خصوص با سیگنال NTSC).
سرانجام استفاده از تجهیزات تلویزیونی آنالوگ، به خاطر باقی ماندن و حل نشدن مشکلات همسان سازی و تأخیر سیگنال ها، دوام چندانی نیافت. در عوض سیستم دیجیتال مشکلات یاد شده را نداشت. دیگر مسائلی نظیر نویز، پاسخ دامنه نسبت به فرکانس و زمان، پارامترهای درونی سیستم دیجیتال بودند که قابلیت الکترونیکی، شروع به تغییر کنند! پس تلویزیون دیجیتال به عنوان بهترین جایگزین برای پردازش ویدئوی آنالوگ مرکب، «سیگنال ویدئوی دیجیتال» را معرفی و پیشنهاد کرد.
به طور کلی مزایا موجود در سیگنال الکتریکی دیجیتال باعث می گردد تا در اولین قدم از طراحی و برپایی هر سیستم پخش همگانی از نوع رادیویی یا تلویزیونی، منابع اطلاعات صوتی و تصویری از وضعیت طبیعی و آنالوگ به حالت دیجیتال یا دودویی تبدیل شوند. برخی از این مزیت ها عبارت اند از :
پایداری و ایمنی بیشتر سیگنال دیجیتال مقابل نویز و عوامل خطا و درنتیجه رسیدن به پاسخ بهتر و نسبت سیگنال به نویز بالاتر در این گونه سیستم ها، قابلیت ذخیره سازی و بافر کردن داده های دیجیتال به صورت بسیار انعطاف پذیر و با حجم بالا، امکان بهره گیری از الگوریتم ها و روش های متنوع و گوناگون در پردازش دقیق سیگنال از جمله فشرده سازی سخت افزاری داده ها و برنامه های نرم افزاری، و بالا بردن ضریب امنیت دسترسی به داده ها از طریق روش های رمزگذاری.
2-مروری بر مفاهیم اولیه
2-1- آشنایی با PCM
معمولا عملیات تبدیل سیگنال های الکتریکی از حالت آنالوگ به دیجیتال به روش PCM انجام می شود. روش PCM توسط لابراتور شرکت AT&T در سال 1937 توسعه یافت و به اجرا درآمد، اما عملا استفاده از این فن تا اواسط دهه ی 1960 که الکترونیک حالت جامد با استفاده از نیمه رساناها گسترش یافت، فراگیر نبود.
از آن به بعد، یکی از روش های مؤثر و مفید در تبدیل و انتقال سیگنال، استفاده از PCM بوده است.
تصویر 3-1 عمل کرد PCM را به سادگی نشان می دهد.
؟؟؟؟؟؟؟جا ی شکل
در ورودی سیستم های مخابراتی معمولا از فیلتر میان گذر (BPF) استفاده می شود، در حالی که در سیستم های ارسال سیگنال ویدئو به دلیل وجود مؤلفه های فرکانسی DC و فرکانس های پایین در اطلاعات تصویر، فیلت پایین گذر (LPF) در مسیر عبور سیگنال به کار برده می شود. پس از فیلتر شدن سیگنال، مدار نمونه بردار و نگهدارنده وظیفه ی نمونه برداری و تبدیل سیگنال آنالوگ پیوسته به سیگنال گسسته را بر عهده دارد. سپس طبقه ی مبدل آنالوگ به دیجیتال قرار گرفته که مقادیر حاصل از سیگنال گسسته را به کدهای دودویی موازی تبدیل می کند و در مرحله ی آخر کدهای دودویی از حالت موازی به حالت متوالی تبدیل و بر یک خط انتقال ارسال می شوند. طبیعتاً در مقصد روند معکوس این عملیات برای بازیابی سیگنال پیغام صورت می پذیرد. مدار مجتمعی که وظیفه ی ساختن PCM و آشکارسازی و کدگشایی آن را بر عهده دارد، کُدک (CODEC) نامیده می شود.
سه تفاوت مهم یک سیگنال آنالوگ پیوسته (در حوزه ی زمان) با سیگنال دیجیتالی یا همان سیگنال PCM وجود داد. نخست این که سیگنال دیجیتال سیگنالی ست که در حوزه ی زمان پیوسته نیست و در عوض به صورت تکه تکه یا گسسته است، یعنی در فرآیند دیجیتال شدن در همان قدم اول عملا یک سیگنال آنالوگ نمونه برداری شده و درنتیجه گسسته در زمان داریم (مشابه فیلم سینمایی که از فریم های مجزای پشت سر هم تشکیل شده است). دوم این که سیگنال دیجیتال کوانتیزه است و به عبارتی دامنه ی آن را با مقادیر عددی صحیح تقریب زده اند (از این رو این سیگنال دیجیتال درواقع یک نمایش نمادین ناپیوسته و تقریبی – البته با دقت خوب – از سیگنال آنالوگ اولیه است). سومین تفاوت این است که سیگنال دیجیتال به صورت دودویی کد شده است و مقادیر آن صرفاً با ارقام صفر و یک معرفی می گردند.
به اختصار این که یک مبدل آنالوگ دیجیتال (D/A) مداری ست که وظیفه ی تبدیل یک سیگنال پیوسته ی آنالوگ با مقادیر دامنه ای بسیار متنوع را به سیگنالی نمونه برداری شده، کوانتیزه و تقریبی، و در نهایت فقط با دو سطح دامنه ای (صفر و یک) بر عهده دارد. عمل کرد معکوس این مدار مبین یک مبدل دیجیتال به آنالوگ (D/A) است که وظیفه ی بازسازی سیگنال پیغام آنالوگ را عهده دار است.
2-2- بررسی ساز و کار نمونه برداری در حوزه ی زمان
چنان که گفته شد، اولین مرحله از کدینگ PCM عبارت است از تبدیل سیگنال پیوسته به گسسته با نمونه برداری در حوزه ی زمان. اگرچه اینک مجال و قصد بررسی جزئیات الکترونیکی را نداریم ، اما به عنوان یک مثال خوب می توان مدار نمونه برداری طبیعی را مطابق تصویر 3-2 بررسی کرد.
؟؟؟؟؟؟؟؟؟؟؟؟جای شکل
در این مدار بخش هایی از سیگنال آنالوگ ورودی که نمونه برداری می شوند دارای دامنه هایی با شکل طبیعی سیگنال ورودی (مثلا سینوسی) هستند. در این مدار ترانزیستور FET تنها نقش یک کلید الکترونیکی را بازی می کند و هنگامی که قطار پالس نمونه بردار به پایه ی دروازه ی FET وارد می شود، چنانچه در وضعیت مثبت (High) باشد، ترانزیستور به حالت هدایت درآمده و درواقع کلید بسته می شود، خروجی را به زمین متصل و ولتاژ خروجی را صفر می کند. برعکس وقتی که پالس نمونه بردار در وضعیت صفر (Low) هست، کلید FET باز مانده و به سیگنال ورودی بدون هیچ تغییری اجازه ی عبور به مرحله ی بعد، یعنی پایه ی مثبت آمپلی فایر عملیاتی می دهد. در نهایت شکل موج ولتاژ خروجی آمپلی فایر، شامل دنباله ای از پالس هایی با فاصله ی مساوی و با دامنه های منحنی شکل خواهد بود.
در تصویر 3-3 چگونگی تغییرات یک سیگنال در بازه ی زمان، قبل و بعد نمونه برداری دیده می شود. به این تربیت، درواقع یک قطار پالس تکرار شونده در سیگنال آنالوگ ورودی ضرب یا توسط آن مدوله می شود. در عمل برای نزدیک شدن به نمونه برداری ایده آل باید قطار پالس به گونه ای باشد که تا حد امکان پهنای زمانی پالس ها و دوره ی تناوب تکرار پالس ها کوچک اختیار شوند.
؟؟؟؟؟؟؟؟؟؟؟؟؟؟؟ جای شکل
2-3-نگاهی نظری به نمونه برداری
در تحلیل ریاضی فرآیند نمونه برداری مشخص می شود که به رغم تکه تکه شدن سیگنال و از بین رفتن پیوستگی آن در حوزه ی زمان و تبدیل شدن سیگنال پیوسته ی اولیه به مجموعه ای از نمونه های مجزا، هنوز تمام اطلاعات موجود در سیگنال اولیه محفوظ می ماند و دوباره به صورت کامل قابل بازیابی ست (البته به شرط رعایت معیار نایکویست).
تصویر 3-4 عمل کرد نمونه برداری در حوزه ی زمان را به صورت الکترونیکی نمایش می دهد که با سرعت fs بار در هر ثانیه باز و بسته شده و سیگنال پیوسته ی (t)x را تبدیل به شکل موج گسسته ی (t)xs می کند.
روی منحنی معلوم است که سیگنال حاصل شامل پالس هایی با دامنه ی متغیر و با دوره ی تناوب Ts است.
؟؟؟؟؟؟؟؟؟؟؟؟؟جای شکل
نرخ یا میزان نمونه برداری زمان به پهنای باند فرکانسی سیگنال آنالوگ اولیه بستگی دارد. طبق معیار نایکویست، حداقل نرخ نمونه برداری دو برابر fmax است. در این رابطه fmax بالاترین مؤلفه ی فرکانسی موجود در سیگنال اولیه است. برای مثال، در یک سیگنال صوتی که از قبل آن را با یک فیلتر پایین گذر Khz 15 محدود کرده ایم، فرآیند نمونه برداری برای رعایت معیار نایکویست با فرکانس Khz 15 2 یا Khz 30 قابل انجام است. در این حالت، دوره ی تناوب مقادیر نمونه ای برابر با ( 15000 2 (/1 یا 33 میکروثانیه است.
تصویر 3-5 طیف حاصل از نمونه برداری را در حوزه ی فرکانس نمایش می دهد. در بخش الف سیگنال پیغام، (t)x ، بنا به فرض طیفی مثلثی شکل با پهنای باند w دارد.
طیف فرکانسی سیگنال پالس نمونه برداری عبارت است از مؤلفه های فرکانسی تکرار شونده با فواصل مساوی fs که تا بی نهایت ادامه دارند. در بخش ب طیف فرکانسی سیگنال نهایی (حاصل ضربی یا نمونه برداری شده) مشاهده می شود که هم شامل طیف فرکانسی سیگنال آنالوگ اولیه، همان پیغام، به صورت کامل و دست نخورده هم تکرار آن در فرکانس های fs و fs2 و fs3 و ... است. طبق معیار نایکویست باید fs بزرگ تر از w 2 باشد، که در صورت رعایت آن، در طیف نهایی فواصلی خالی خواهیم داشت (باز تصویر ب را بنگرید) که به آن باند محافظ می گویند و وظیفه شان جلوگیری از روی هم افتادگی و تداخل بخش های مجاور طیف است.
؟؟؟؟؟؟؟؟؟؟؟؟؟جای شکل
به این ترتیب، همواره زمانی که سیگنال پیوسته ی آنالوگ را با این روش به سیگنال گسسته ی زمانی تبدیل می کنیم، با تحلیل ریاضی فوریه به این نتیجه می رسیم که طیف سیگنال پیغام به صورتی متناوب در حوزه ی فرکانس نظیر تصویر اخیر تکرار می شود. اگر مجددا سیگنال نهایی را از فیلتر پایین گذر با پهنای باند w عبور دهیم، به سادگی کل طیف پیغام را باز می یابیم و درنتیجه، سیگنال پیغام به طور کامل بازسازی می گردد. این پدیده حتی از طرف ریاضی دان ها به عنوان «ابهام» در سیگنال های دیجیتال تعبیر می شود!
2-4- پدیده ی تداخل فرکانسی نامطلوب
اگر سیگنال آنالوگ به خوبی نمونه برداری نشود یا به عبارتی فرکانس نمونه برداری fs از نرخ نایکویست کمتر باشد، پدیده ی مضر تداخل فرکانسی نامطلوب رخ می دهد. در این حالت، همچنان که در بخش ج تصویر 3-5 مشهود است، مؤلفه های فرکانس بالاتر به مؤلفه های فرکانس پایین تر نزدیک شده و بین دو باند فرکانسی مجاور تداخل پیش می آید. دلیل دیگری که سبب این پدیده می گردد، نامحدود بودن طیف سیگنال آنالوگ اولیه (پیغام) است.
چنانچه طیف سیگنال اولیه از حدود تعیین شده تجاوز کند ( در مثال مدنظر – تصویر 3-6 را نیز ببینید – اگر پیغام دارای مؤلفه های فرکانسی بالاتر از W باشد)، پس از مرحله ی حاصل ضرب، باز هم مؤلفه های فرکانس بالا در بخش های فرکانس پایین تداخل می کنند.
در هر دو صورت، بازسازی سیگنال پیغام با مشکل روبه رو می شود.
؟؟؟؟؟؟؟؟؟؟؟؟؟ جای شکل
برای رفع این مشکل، نخست باید قبل از شروع نمونه برداری، مطابق 3-7، سیگنال آنالوگ از یک فیلتر پایین گذر مناسب عبور داده شود(دو مثال مطرح شده با فرکانس قطع W) تا طیف آن کاملا محدود گردد. به چنین فیلتری، فیلتر ضدپدیده ی تداخل نامطلوب نیز گفته می شود.
ثانیا باید فرکانس نمونه برداری با معیار نایکویست تطابق داشته باشد و بیش از دو برابر پهنای باند سیگنال پیغام در نظر گرفته شود، یعنی : fs >2w

2-5- کوانتیزه کردن یا تقریب زنی (Quantization)
پس از نمونه برداری، سیگنال آنالوگ گسسته شده راهی طبقه ی کوانتیزه کننده می شود. در این بخش، دامنه ها به چندین سطح طبقه بندی می شوند که تعداد این سطوح بستگی به دقت مطلوب دارد. واضح است که در اینجا به ازای محدوده ای دامنه ها در وردی، در خروجی فقط یک مقدار دامنه ای صحیح خواهیم داشت. به بیان دیگر، هر دامنه ی ورودی با نزدیک ترین اعداد کمتر و بیشتر از آن مقایسه شده و در نهایت عددی که کم ترین اختلاف را داشته باشد، در خروجی ظاهر می شود. برای نمونه به تصویر 3-7 و توضیحات آتی توجه کنید.
؟؟؟؟؟؟؟؟/جای شکل
در این تصویر فاصله ی حداکثر دامنه ی ورودی (مثلا مقدار یک ولت) تا حداقل آن (مقدار صفر ولت) به هشت قسمت تقیم شده و فاصله ی دو بخش متوالی برابر با یک هشتم است که این مقدار اصطلاحاً اندازه ی گام نامیده شده و معرف حداقل قابلیت تفکیک عددی کوانتیزه کننده است. با این تقسیم بندی به ازای مقادیر بسیار متفاوتی که سیگنال ورودی بین صفر و یک ولت می تواند به خود بگیرد، در خروجی کوانتیزه کننده فقط هشت مقدار عددی صحیح خواهیم داشت. در این مثال، مقادیر خروجی به مقادیر دودویی تبدیل شده اند و چون پس از کوانتیزه کننده، کدینگ دودویی صورت می پذیرد، پس فقط هشت مقدار دودویی در خروجی تولید می شوند. برای مثال اگر دامنه ی ورودی بین مقادیر یک چهارم تا سه هشتم قرار بگیرد، پس از کوانتیزه کردن و کدینگ، مقدار 010 را در خروجی نهایی خواهیم داشت.
در تصویر 3-8 سیستم PCM سه بیتی متناسب با مثال اخیر ترسیم شده که در آن برای سهولت، مقیاس کل دامنه بین مقادیر صفر تا 7 درنظر گرفته شده و به عنوان مثال، در چهار مقطع زمانی از سیگنال آنالوگ نمونه برداری صورت گرفته است. طبق قاعده، به هر نمونه ولتاژی پس از کوانتیزه شدن یک کد سه بیتی تخصیص داده شده است.
به این ترتیب، مهم ترین نکته ای که در رابطه با مدار کوانتیزه کننده باید در نظر گرفت، وجود همیشگی «تقریب» و درنتیجه مقداری خطا در خروجی است. طبیعتاً هر چه تعداد تقسیمات بیشتر و فاصله ی اعداد کمتر باشد، تقریب زنی نتیجه ی بهتری خواهد داشت. به هر حال، این عملیات هیچ گاه کاملا خالی از خطای ناشی از تقریب زنی نیست.
در مورد سیگنال هایی با دامنه ی بزرگ میزان خطا کمتر و در مورد سیگنال هایی با دامنه ی کوچک و حساس تر، میزان خطا احتمالا قابل ملاحظه خواهد بود. خطای ناشی از کوانتیزه کردن، یکی از ویژگی های طبیعی سیستم های دیجیتال است. در بعضی منابع از آن به عنوان نویز حاصل از کوانتیزه شدن یاد می شود.
؟؟؟؟؟؟؟؟؟؟؟جای شکل

حداکثر میزان خطای کوانتیزه کردن برابر نصف اندازه ی گام است. در مثال های اخیر، این مقدار برابر 16/1 است.
حال مطابق تصویر 3-9 یک سیگنال آنالوگ را در ورودی مبدل A/D درنظر می گیریم. در اینجا به سه صورت می توانیم سیگنال را کوانتیزه کنیم.
؟؟؟؟؟؟؟/جای شکل
در حالت اول، مطابق تصویر، اندازه ی گام را چنان بزرگ انتخاب می کنیم که خروجی تنها دو وضعیت داشته باشد و فقط با یک بیت مقادیر را بیان کنیم (مقدار صفر یا یک). آنچه آشکار است این که در این حالت دقت بسیار کم است و این نوع پردازش هیچ گونه اطلاع درستی از وضعیت سیگنال به ما نمی دهد. واضح است در حالت دوم، اندازه ی گام ها را کاهش دهیم و تقسیمات را کوچک تر کنیم، می توانیم چهار مقدار عددی در خروجی داشته باشیم و با دو بیت مقادیر را بیان کنیم ( از مقدار 00 تا 11). در حالت سوم تقسیمات را باز هم کوچک تر کرده و به هشت وضعیت در خروجی می رسیم که در این حالت می توانیم با سه بیت دودویی مقادیر را بیان کنیم (از مقدار 000 تا 111 ). در اینجا اگرچه تعداد بیت خروجی بیشتری مصرف کرده ایم، اما دقت افزایش یافته و خطای تقریب زنی کم شده است.
حال مجددا یک سیگنال آنالوگ را به عنوان ورودی در حوزه ی زمان فرض کرده و این بار با تقسیمات شانزده گانه آن را کوانتیزه و با چهار بیت کد می کنیم.
در تصویر 3-10 تأثیر کوانتیزاسیون را بر سیگنال می توانیم ببینیم، کاملا واضح است که سیگنال خروجی کوانتیزه کننده شکلی پلکانی یافته و با شکل موج اولیه متفاوت است. مشهود و آشکار است که هر چه تقسیمات دامنه کوچک تر باشد، دقت خروجی بیشتر و خطای کوانتیزه شدن کمتر است، اما در عوض تعداد بیت بیشتری در خروجی تولید خواهد شد که بسته به کاربرد این موضوع تبعات مثبت و منفی خود را دارد.
به طور کلی در سیستم PCM رابطه ای که میان تعداد سطوح کوانتیزه و تعداد بیت خروجی وجود دارد، چنین قابل بیان است : اگر تعداد بیت را با a و تعداد سطوح کوانتیزه را با q نمایش دهیم، آنگاه : q = 2a
؟؟؟؟؟؟؟؟؟؟؟؟؟ جای شکل
2-6- تبدیل سیگنال دیجیتال به آنالوگ (D/A)
برای تبدیل سیگنال دیجیتال به آنالوگ، در فرآیند معکوس A/D که در قبل دیدیم، مطابق تصویر 3-11 ، سیگنال PCM را ابتدا کدگشایی و سپس توسط یک فیلتر پایین گذر سیگنال آنالوگ را بازسازی می کنیم. در ابتدا، از آنجا که سیگنال PCM در ضمن انتقال به دلایل زیادی (به خصوص وجود نویز) تغییر شکل می دهد، با گذر از یک طبقه ی بازتولید پالس، مجددا پالس ها اصلاح شده و به فرم طبیعی خود برگردانده می شوند.

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  45  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله مروری گذرا بر تاریخچه تلویزیون دیجیتال و مزایای آن