سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق مبدلهای آنالوگ به دیجیتال

اختصاصی از سورنا فایل دانلود تحقیق مبدلهای آنالوگ به دیجیتال دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 11

 

بسمه تعالی

مبدلهای آنالوگ به دیجیتال

مقدمه :

ازسال 1960 با توجه به توسعه نیمه هادی ها ، پردازش اطلاعات به صورت دیجیتال اهمیت بیشتری پیدا کرد و ساخت و استفاده از مدارهای آنالوگ روبه افول گذاشت . با پیدایش میکروپروسسورها انقلابی در زمینه پردازش دیجیتال به وقوع پیوست که تا ده سال پیش از آن حتی قابل تصور نبود .

تقریباََ تمام اطلاعات مورد پردازش پارامترهای فیزیکی ای هستند که در اصل ماهیت آنالوگ دارند ، مانند : فشار، دما ، سرعت ، شتاب ، شدت نور ، ... بنابراین درهرمورد این اطلاعات آنالوگ با استفاده از مبدلهایADC به معادل دیجیتالشان تبدیل شوند .

تبدیل آنالوگ به دیجیتال در سیستم های پردازش سیگنال :

بطور کلی فرایند تبدیلA/D یک سیگنال آنالوگ نمونه برداری شده و نگهداشته شده را به یک کلمه دیجیتال که نماینده سیگنال آنالوگ است تبدیل می کند . تاکنون چندین مبدل آنالوگ به دیجیتال ساخته شده که هریک مشخصات مربوط به خود را دارند .

مهمترین این مشخصات عبارتند از : سرعت ، صحت ، هزینه .

قبل از هر چیز باید متذکر شویم که عمل تبدیل آنالوگ به دیجیتال احتیاج به صرف زمان بیشتری از تاخیر مبدلهای D/A دارد ؛ تا وقتی که تمامی بیتهای مقدار دیجیتال به دست نیامده اند ، مقدار آنالوگ (ورودی ) نباید تغییر کند . ولی ، می دانیم که تغییرمی کند ؛ چاره این است که در فواصل زمانی معین نمونه هایی از دامنه سیگنال آنالوگ بگیریم و بدون تغییر ذخیره نماییم و پس از ارزیابی کامل نمونه را حذف و نمونه جدیدی را تهیه و ذخیره کنیم . این عمل توسط مداری به نام مدار نمونه گیر و نگهدارنده 1(S/H) انجام می گیرد . این مقدار باید قبل از مبدلهای A/D در مدار قرارگیرد . شکل یک صورت نمایشی از یک مدار S/H را نشان می دهد .

عمل نمونه گیری و نگهداری (S/H) معمولاً به وسیله یک سوئیچ برای نمونه برداری و یک خازن برای نگهداری و یک ‚‚ میانگیر،، برای جلوگیری از تخلیه خازن انجام می شود . به این ترتیب که سوئیچ S1 در لحظه خاصی بسته می شود و خازن C را در زمان کوتاهی به وسیله سیگنال آنالوگ شارژ می کند . این زمان به قدری کوتاه است که در طول آن دامنه سیگنال آنالوگ تغییر چندانی نمی کند . وقتی سوئیچ 1S باز می شود . خازن به موازات خود امپدانس بزرگی می بیند و لذا نمی تواند تخلیه شود . ضمناً ، در طرف دیگر خازن نیز میانگیر به کار گرفته شده است که با امپدانس ورودی زیاد خود مانع تخلیه خازن از آن طرف می شود . در صورتی که خازن به وسیله سیگنال نمونه ورودی شارژ کامل شود (ولتاژ آن به اندازه دامنه نمونه باشد ) ، سیگنال نمونه جدید (کمتر یا بیشتر از قبلی) دو باره آن را به اندازه جدید تغییر می دهد . ولی ، اگر عرض بالس آنقدر کم باشد و یا خاذن جمع آنقدر بزرگ باشد که فرصت شارژ کامل بدست نیاید (عرض پالس کمتر از T ) ، ولتاژ جدید روی ولتاژ قبلی در خازن جمع و ذخیره می شود ، که در نهایت این ولتاژ بستگی به ولتاژ قبلی خواهد داشت . در چنین حالتی ، باید سوئیچ 2S را به خازن اضافه کنیم تا پس از خاتمه تبدیل و قبل از نمونه برداری بعدی ، با اتصال کوتاه کردن خازن باعث تخلیه آن شود . این مدار را می توان به صورت جزء به جزء ساخت ، ولی ، ضمناً مدارهای مجتمعی به نام S/H وجود دارند که دقیقاً همین اعمال را انجام می دهند .

عمل تبدیل سیگنال آنالوگ به دیجیتال شامل چهار مرحله متوالی نمونه برداری ، نگهداری و سپس ، ارقامی کردن و رمزکردن است ، که این اعمال لزوماً به صورت جداگانه انجام نمی شود . بلکه به طور معمول عمل نمونه برداری و نگهداری به طور همزمان به وسیله یک مدار S/H و عمل تبدیل به رقم و رمز نیز به وسیله قسمت اصلی مدار A/D انجام می شود . حال چند نمونه معمول این مبدل شرح داده می شود .

. مدار نمونه گیر و نگهدارنده S/H .

1 – مبدل موازی :

سریعترین مبدل A/D می باشد و از تعدادی مقایسه کننده تشکیل شده که هر یک ولتاژ آنالوگ ورودی را با کسری از ولتاژ مرجع مقایسه می کند ، بنابراین برای ساخت یک مبدل 8 بیتی به این روش نیاز به 255 مقایسه کننده می باشد .

ولتاژ مرجع در بالای مقسم مقاومتی باید برابر حداکثر ولتاژ آنالوگ ورودی (Vm) باشد . سیگنال آنالوگ که باید مقدار آن ارقامی شود به همه مقایسه کننده ها به طور موازی و همزمان اعمال می شود . خروجی هرکدام از مقایسه کننده ها هنگامی در ‌‌‚‚1،، منطقی قرار می گیرد که ولتاژ ورودی مثبت آن بزرگ تر از ولتاژ مرجع در ورودی منفی اش شود .

همینطور که ملاحظه می شود ، دراین نوع مبدل برای n بیت احتیاج به 1- 2 عدد مقایسه کننده داریم . در نتیجه ، صرف نظر از اشکالاتی که در تنظیم هر مقایسه کننده داریم . تعداد مقایسه کننده ها آنقدر زیاد می شود که از نظر اقتصادی مقرون به صرفه نیست . (البته مدارهای مجتمعی به بازار آمده است که از این روش استفاده می کند و تعداد زیادی هم مقایسه کننده در آنها به کار رفته است . ولی بسیار گران هستند )ونیز برای n بیت تعداد 2 حالت وجود دارد که مستلزم تهیه 1-2 (به تعداد مقایسه کننده ها ) ولتاژ مرجع مختلف است . این ولتاژها باید بسیار دقیق باشند و در حین مقایسه ، دراثر تغییر جریان ورودی مقایسه کننده کم و زیاد نشوند (یعنی امپدانس منبع آنها کم باشد ) .

. مبدل موازی ( مدار FLASH ) .

2 – مبدل موازی متوالی :

این مبدل در واقع ازبستن متوالی دو یا چند مبدل موازی ساخته می شود . علت اصلی چنین کاری را می توان به این صورت روشن کرد : هر مبدل موازی احتیاج به 1- 2 عدد مقایسه کننده دارد . حال اگر نیمی از بیتهای تبدیل را در یک مرحله تعیین کنیم و نصف دیگر را در مرحله دیگر . اگر چه زمان تبدیل حدوداً دو برابر می شود ولی تعداد مقایسه کننده ها به مقدار قابل توجهی کم خواهد شد . البته . برای اینکه مبدل دوم همان بیتهای مبدل اول را به دست نیاورد ، باید بیتهای خروجی مبدل اول را به وسیله یک D/A به آنالوگ تبدیل کنیم و آن را از ولتاژ آنالوگ ورودی کم کنیم .

نکته دیگری که باید گفت اینستکه اگر حساسیت مقایسه کننده ها بیش از حد لازم باشد ، نویز در زمانی که سطوح ولتاژ ورودی به یکدیگر نزدیک هستند باعث نوسان و خروجی مدار می شود . از طرف دیگر ، وجود تعداد زیادی مقایسه کننده در مبدل نیز اشکالات را به همان نسبت زیاد می کند .

. مدار مبدل موازی متوالی ( نیمه موازی ) .

3 _ مبدل VTF :

الف) مبدل غیر همزمان و بدون پالس ساعت .

نوعی مبدل موازی با ولتاژهای آستانه متغییر است که برای تعیین هر بیت در خروجی فقط به یک مقایسه کننده نیاز دارد و احتیاج به مدار منطقی اضافی برای ارقامی کردن خروجی مقایسه کننده ها هم ندارد . مزیت سیستم VTF نسبت به سایر انواع A/D ، قدرت تبدیل با سرعت زیاد در کنار سادگی طرح و ارزانی آن است . اساساً ، سیستم VTF ، یک نوع مبدل نیمه موازی است که در آن از فیدبک استفاده شده است . افزودن فیدبک ، شمار مقایسه کننده ها را برای سیستم n بیتی از 1- 2 به n کاهش می دهد . دراین روش نیز ، همانند روش موازی ، ولتاژهای آستانه مقایسه کننده ها ابتدا در وزنهای دودویی ولتاژهای مرجع تنظیم شده است ، به طوری که ولتاژ آستانه MSB برابر 2/Vref ، برای بیت بعدی (دومین MSB) برابر 4/Vref و برای بیت سوم برابر 8/Vref ، و به همین ترتیب برای بقیه است .

شکل رسم شده ، VTF را برای یک مبدل سه بیتی نشان می دهد . طرزکارسیستم ، اگرهرکدام از مدارهای تعیین کننده ولتاژ آستانه را به عنوان یک D/A در نظر بگیریم ، به آسانی مشخص می شود . در این صورت ، برای اولین بیت (MSB) تنها یک D/A یک بیتی ، برای دومین بیت یک D/A دوبیتی ، برای سومین بیت یک D/A سه بیتی و به همین ترتیب...، لازم است .

چون در سیستم VTF ، اول مهمترین بیت (MSB) تعیین می شود و بعد دومین و سومین و غیره ، اگر خروجیA/D را قبل از آنکه جواب به طور کامل تبدیل شده باشد به کار ببریم ، خطا فقط در بیتهایLSB خواهد بود و در نتیجه حتی اگر سیستم به طور کامل عمل تبدیل را انجام نداده باشد ، بازهم اطلاع مفید ولی نا کامل در باره سیگنال آنالوگ به ما خواهد داد ، درصورتی که سایر مبدلهایA/D با داشتن چنین سرعتی (سرعت زیاد ) ، اگر قبل از کامل شدن عمل تبدیل خروجیشان مورد استفاده قرارگیرد ، دارای خروجی غیرقابل پیش بینی خواهند بود .

سیستم فوق به طور غیرهمزمان و بدون پالس ساعت همگام کننده عمل می کند ، دراین سیستم ، خروجی مبدل ، ورودی را دنبال می کند و ممکن است در حین تبدیل ، چنانچه سرعت تغییرات ورودی بسیار بالا باشد ، به حالتهای غلط هم برود .

ب) مبدلVTF همگام .

درصورت نیاز به سرعتهای بالاتر ، می توانیم به وسیله افزودن مدارهای تاخیر دیجیتالی به اضافه یک زمان تاخیر آنالوگ ، سیستم همگامVTF رابسازیم . مزیت آن این است که بعد از زمان تاخیر انتشار یک تبدیل در ابتدای کار سیستم ، از آن پس خروجیA/D با هر پالس ساعت یک تبدیل کامل را انجام می دهد .

در سیستم VTF غیر همگام سیگنال ورودی تا پایان عمل تبدیل باید ثابت بماند ، در صورتی که در سیستم VTF همزمان ، هر خروجی در یک فلیپ فالاپ ذخیره می شود و خروجی فلیپ فلاپ برای تعیین بیتهای بعدی انتقال می یابد . به این ترتیب ، بیتهای قبلی می توانند بدون اینکه منتظر کامل شدن عمل تبدیل شوند ، خروجی جدید داشته باشند . بنابراین ، مبدل می تواند بعد از یک نأخیر اولیه که مدت n پریود ساعت طول می کشد ، در هر پریود ساعت یک تبدیل کامل از موج ورودی را انجام دهد .

باتوجه به مطالب فوق ، سیستمVTF ، با حداقل اجزا ، ساده ترین ، ارزانترین و در عین حال از سریعترین مبدلهایA/D است که با توجه به تکنولوژی امروز قابل ساخت است .


دانلود با لینک مستقیم


دانلود تحقیق مبدلهای آنالوگ به دیجیتال

مقاله در مورد آشنایی با کارتهای حافظه دوربین های دیجیتال

اختصاصی از سورنا فایل مقاله در مورد آشنایی با کارتهای حافظه دوربین های دیجیتال دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد آشنایی با کارتهای حافظه دوربین های دیجیتال


مقاله در مورد آشنایی با کارتهای حافظه دوربین های دیجیتال

لینک پرداخت و دانلود در "پایین مطلب"

فرمت فایل: word (قابل ویرایش و آماده پرینت)

تعداد صفحات: 2

 

آشنایی با کارتهای حافظه دوربین های دیجیتال برای ذخیره کردن عکس خود از کارتهای حافظه استفاده می کنند. این دوربین ها عکس ها را با فرمت JPG (یا با فرمت دیگر بسته به دوربین) ذخیره می کنند تا در نهایت این فایل های تصویری به کامپیوتر منتقل شود و شما قادر به دیدن عکس های خود باشید. در ابتدا دوربین های دیجیتال فقط از طریق پورت سریال به کامپیوتر متصل می شدند و سرعت انتقال بسیار پایین بود. امروزه دوربین های دیجیتال از طریق پورت USB به کامپیوتر متصل می شوند و سرعت انتقال اطلاعات بیشتری فراهم می کنند. چند نوع کارت حافظه در بازار یافت می شود. قابل توجه است که سازندگان بزرگ و معتبر دوربین های دیجیتال بجای اینکه از یک استاندارد واحد در زمینه کارتهای حافظه استفاده کنند هر کدام استاندارد خاص خود را دارند. برجسته ترین آنها عبارتند از: -Compact Flash (CF) -Memory Stick (MS) -Multi Media Card (MMC) -Secure Digital (SD) -Smart Media (SM) -XD یکی از تفاوتهای مهم کارتها در سرعت انتقال اطلاعات آنهاست. با یک کارت سریعتر نه تنها عکس ها را با سرعت بیشتری به کامپیوتر خود منتقل می کنید بلکه زمانیکه عکس می گیرید عکس های شما سریعتر ذخیره می شوند و دوربین سریعتر آماده گرفتن عکس بعدی می شود.


دانلود با لینک مستقیم


مقاله در مورد آشنایی با کارتهای حافظه دوربین های دیجیتال

پکیج طراحی، شبیه سازی، کدنویسی و ساخت منبع تغذیه دیجیتال

اختصاصی از سورنا فایل پکیج طراحی، شبیه سازی، کدنویسی و ساخت منبع تغذیه دیجیتال دانلود با لینک مستقیم و پر سرعت .

پکیج طراحی، شبیه سازی، کدنویسی و ساخت منبع تغذیه دیجیتال


پکیج طراحی، شبیه سازی، کدنویسی و ساخت منبع تغذیه دیجیتال

این پکیج حاوی موارد زیر است:

1-سورس کدهای تمامی مراحل تست و نهایی شدن سیستم

2-مدار شبیه سازی شده با نرم افزار پروتیوس

3-مقالات توضیحات کامل در قالب word و powerpoint


دانلود با لینک مستقیم


پکیج طراحی، شبیه سازی، کدنویسی و ساخت منبع تغذیه دیجیتال

دانلود تحقیق کامل درباره دیجیتال واترمارک 13 ص

اختصاصی از سورنا فایل دانلود تحقیق کامل درباره دیجیتال واترمارک 13 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 13

 

چکیده :

با گسترش سیستمهای چند رسانه ای تحت شبکه شده احساس نیاز به امنیت اطلاعات حمایت از کپی رایت در رسانه های دیجیتالی مختلف مانند تصویر ، کلیپ های صوتی ، ویدئو شدت گرفته است. ویکی از روشهای مناسب جهت رسیدن به این اهداف دیجیتال واترمارک می باشد که عبارت است از توانایی حمل اطلاعات همراه با رسانة مورد نظر جهت احراز هویت در مقاله کاربردهای مختلف واترمارکینگ و همچنین پارامترهایی که باید در واتر مارکینگ و همچنین پارامترهایی که باید در واترمارکینگ در نظر گرفته شوند را بررسی می کنیم و همچنین این مقاله یک الگوریتم جدید واترمارکینگ در حوزة DCT و بر اسا ایدة مدولاسیون FSK دو بعدی به کمک پترن های هادامارد ارائه می کند.

کلمات کلیدی:

احراز هویت ، تصویر ، Digital watermark ، مدولاسیون FSK دوبعدی ، پترن هاردامارد.

1- مقدمه

گسترش سیستمهای چند رسانه ای و استفاده از شبکه های کامپیوتری و اینترنت دسترسی به اطلاعات دیجیتال و کپی برداری از آنها را به آسانی امکان پذیر نموده است که این ، نیازی جهت حفاظت از کپی رایت رسانه های دیجیتالی مختلف مانند تصویر ، کلیپ های صوتی ویدئو را بوجود آورده است بنابر این مسئله حفاظت از داده ها در مقابل کپی برداری و جعل از اهمیت بالایی برخوردار است ، به این دلیل باید از راهکارهایی برای کنترل کپی کردن استفاده نمود. حمایت کپی رایت شامل احراز هویت و شناسایی کپی های قانونی یک تصویر است.

از روشهای حل این مشکل می توان به استفاده از واتر مارکینگ و روشهای مختلف رمزنگاری اشاره نمود اما این روشها اگر چه مزایایی دارند اما دارای چندین عیب نیز می باشند از جمله می توان به گم شدن رمز عبور تغیر محتویات در طول اتقال صرف زمان جهت رمز گشایی و برگرداندن داده نام برد که یکی از روشهای حل این مشکل اضافه کردن یک ساختار مرئی یا نامرئی به تصویر است که می توان آنها را مارک دار کرد، که این روش، دیجیتال واتر مارک یا سایه گذاری دیجیتالی نامیده می شود.

واتر مارکینگ به معنای پنهان کردن داده در تصاویر است به نحوی که با چشم قابل تشخیص نباشد و فقط افراد مجاز قادر به استخراج این اده ها باشند در ضمن سیگنال واترمارک در اثر پردازشهای معمول بر روی تصویر از بین نرود . واتر مارکینگ کاربردهای گوناگونی دارد که مهم ترین کاربرد آن همان طور که گفته شد حفظ حق کپی رایت است. از کاربردهای دیگر آن می توان به ردیابی شخص خائن اشاره کرد. واترمارک عبارت است از توانایی حمل اطلاعات جهت احراز هویت یا کدهای احراز هویت یا علائم اختصاری ضروری جهت تفسیر تصویر ، این توانایی جهت پیدا کردن کاربردی در بر چسب گذاری تصویر ، انجام کپی رایت ، حفاظت از جعل کردن و دستیابی کنترل شده می باشد. Water mark پردازش رمزگذاری مخفیانه اطلاعات کپی رایت در یک تصویر می باشد که این کار با تغییرات کوچک نشانه گذاری (مهر گذاشتن) در محتوای هر سلول تصویری صورت می گیرد . رمز گذاری محتویات را در طول انتقال داده از فرستنده به گوینده محافظت می کند اما سایه گذاری دیجیتالی دسترسی به اطلاعات تصویر را محدود نمی کند . دیجیتال و اترمارک در موارد زیادی کاربرد دارد. ‌(3 و 2)

2- کاربردهای دیجیتال و اترمارک:

1) حفاظت از کپی رایت:

امکان قرار دادن اطلاعات کپی رایت در محتوای فایل مانند نمایش اطلاعات درباره سازنده آن انتشار اخطار درباره استفاده غیر مجاز . (3) می توان واترمارکینگ را همراه با رمزنگاری برای آدرس دهی بعضی موضوعات مهم در محافظت از کپی رایت استفاده کرد. این موضوعات مهم شامل تعیین هویت فروشنده – خریدار ، تخلف از کپی رایت و تایید مالکیت است. تعیین هویت فروشنده – خریدار را استخراج واترمارک موفق در کاربر، هویت فروشنده و خریدار تصویر واترمارک شده را مشخص می کند . در رابطه با شناسایی خریدار فروشنده منظور ما این است که یک استخراج علامت گذاری شده موفق از جانب خریدار ، هویت خریدار و فروشنده تصویر علامت گذاری شده را آشکار خواهد ساخت در رابطه با تخلف از کپی رایت موضوع مطرح شده فروشنده را قادر خواهد ساخت خریدار معین را از کسی که منشاء یک کپی غیر قانونی از تصویر علامت گذاری شده بود، است تمیز دهد و در آینده این حقیقت را به یک طرف ثالث اثبات کند. منظور از تایید مالکیت این است که فروشنده تصویر علامت گذاری شده باید بتواند مالکیت حقیقی خود را در صورت وجود چندین ادعای تملک ثابت نماید سؤالی که مطرح می شود این است که ما چگونه می توانیم برخی اطلاعات (یعنی یک علامت) را با شخص خاصی مرتبط سازیم

برایبر طرف کردن این مشکل ، ما هویت خریداری فروشنده را با زوج کلید عمومی خصوصی مرتبط ساخته ایم. در یک موقعیت جهان واقعی زیر ساخت کلید عمومی (PKI) چارچوبی را فراهم می سازد که در آن یک زوج کلید عمومی – خصوصی با هویت فرد مربوط می شود. به طور مثال با صدور گواهی نامه های خصوصی و امضاهای دیجیتالی استفاده می کنیم تا هویت خریدار – فروشنده را با تصویر علامت گذاری شده پیوند دهد. این روش به فروشنده امکان می دهد تا خریدار مشخص را از کسی که منشاء یک کپی غیر قانونی از تصویر علامت گذاری شده پیوند دهد. این روش به فروشنده امکان می دهد تا خریدار مشخص را از کسی که منشا یک کپی غیر قانونی از تصویر علامت گذاری شده بوده است . تمیز دهد و در آینده این حقیقت را به یک طرف ثالث اثبات کند. این روش در مقابل دست بردن در تصویر اولیه ، مهر و موم زمان یا علامتگذاری ها مقاوم است . امنیت رمزگذاری تابع hash و سیستم رمزگذاری کلید عمومی RSA متضمن امنیت شمای علامتگذاری در مقابل چنین حمله هایی است . هر چند تکنیک طیف گسترده که ما برای جداسازی علامت خصوصی به کار گرفته ایم کاملاً توانمند است اما در هر حال یک تکنیک غیر ناپیدا محسوب می شود. به طور مثال ، در مورد تخلف کپی رایت و تایید مالکیت ، از فروشنده قانونی خواسته می شود تا برای رفع مناقشه تصویر اولیه را ارائه نماید. با توجه به اینکه این شیوه به صورت بالقوه باعث تکنیک علامت گذاری ناپیدا راه حل مناسبی برای استخراج علامت گذاری خصوصی به نظر می رسد (5)

2) سندیت (بدن نقص) :

قراردادن اطلاعات مربوط به احراز هویت یا سندیت اطلاعات مانند استفاده از اطلاعات به عنوان رمز ورود و ذخیره کردن اطلاعات شخصی که مورد نیاز ecomerce است. مشابه کلیدهای عمومی و خصوصی (3) انتظار می رود که کاربردهای کپی رایت ، توسط کاربردهایی مانند کنترل وسیع و ردیابی محتوای توزیع شده در همکاریها تحت شعاع قرار گیرد. همچنین ما انواعی از کاربردها را می بینیم که ارزش را به وسیلة اضافه تکنیک های اخیر در اتصال با تشخیص دهنده های چند واحدی به کار می روند. اثر انگشت یکی از این تشخیص دهنده هاست که برای تشخیص شخص به کار می رود. Ratha متدی را معرفی کرد که برای تصویرهای اثر انگشت بسیار کوچک به نظر می رسد. Jain نیز اطلاعات ظاهری را برای تصدیق تصویر اثر انگشت به کاربرد. مقداری از ضرایب در پیکسل تصویر اثر انگشت انتخاب شده محصور می شود. مرحلة محصور کردن در محدودة فضایی است و نیاز به تصویر اولیه برای استخراج واتر مارک ندارد.

این قسمت واترمارک دیجیتال را با استفاده از اطلاعات ظاهری و آماری برای تغییر زنجیرة حفاظتی و محافظت از تصاویر اثر انگشت به کار می برد. واترمارک ها، در منطقة انتخاب شدة تصویر اثر انگشت ، با استفاده از جابجایی مجزای امواج کوچک محصور شده اند. نتایج نشان می دهد که تغییر در این مکان ها جزئی است و جزئیات را نگهداری می کند. صحت تصویر اثر انگشت از طریق امتیازات تطابقی بالای بدست آمده از سیستم تشخیص اتوماتیک اثر انگشت تصدیق می شود. همچنین میزان زیادی ارتباط دیداری بین تصاویر محصور شده و تصاویر استخراج ساده وجود دارد. میزان شباهت بر پایه واحد پیکسل و واحد دید انسان محاسبه می شود نتایج همچنین نشان می دهد که اثر انگشت پیشنهادی و تصاویر استخراج شده نسبت به حملات معمول مانند فشار و صدا ارتجاعی است (10)

دو روش مکانی برای داده های واترمارک تعبیه شده داخل تصاویر اثر انگشت بدون از بین بردن خصوصیاتش وجود دارد . اولین روش، داده های واترمارک را بعد از خارج کردن خصوصیات آن قرار می دهد ، بدین گونه که ، واترمارکینگ جلوگیری کننده این روش یک تکنیک تطبیقی تصویر را استفاده می کند که برای واترمارک های با قابلیت مشاهده جزئی نتیجه می دهد.

این روش برای واتر مارکینگ تصاویر رنگی استفاده می شود. دربارة تصاویر رنگی به وسیة استفاده از دو خصوصیات انحراف معیار و اندازه گیران ناحیه های تصویر در واتر مارک جاسازی شده و به وسیلة کنترل پردازش واترمارک جاسازی شده برای رمزگشایی صحیح کارایی رمزگشایی داده های واترمارک افزایش داده شده است، مخصوصاً برای تصاویر شلوغ و به هم بافته. واترمارک های جاسازی شده غیر قابل مشاهده هستند این نشان می دهد که تصویر روی رمز گشایی داده های واترمارک تاثیر زیادی ندارد.

روش دوم یک تکنیک واترمارک تطبیقی خاص را برای اثر انگشت مطرح می کند. بنابر این قبل از استخراج خصوصیات قابل اجرا است. برای هر دو روش ، رمزگشایی به تصویر اثر انگشت اصلی نیاز ندارد. برخلاف بیشتر روشهای واترمارکینگ مکانی این روش دقت رمز گشایی بالایی را برای تصاویر اثر انگشت فراهم می کند. همچنین پنهان کاری داده ها و انجام رمزگشایی شمای واترمارکینگ قادر به استقامت در برابر جملات مانند transcoding فیلترنیگ و حتی حملات geometric (در قسمتهای بعد این مقاله روشهایی برای تحریف Geometric ارائه خواهیم کرد)

البته به شرطی که متدهای برگشت پذیر این حملات ثبت شده باشد این روش علاوه بر اینکه برای حفاظت از کپی رایت مناسب است بار محاسباتی آن ناچیز است و در کاربردهایی مانند نظارت broadcast نیز مناسب است.(V)

3) ارتباط امن و غیر قابل رؤیت:

در کاربردهایی که فایل ها از طریق attachment های e-mail منتقل شده و یا محل هایی ذخیره می شوند که قابل دسترسی عموم می باشند.


دانلود با لینک مستقیم


دانلود تحقیق کامل درباره دیجیتال واترمارک 13 ص