سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه ایجاد خاصیت آنتی باکتریال آب با استفاده از نانو ذرات نقره. doc

اختصاصی از سورنا فایل پروژه ایجاد خاصیت آنتی باکتریال آب با استفاده از نانو ذرات نقره. doc دانلود با لینک مستقیم و پر سرعت .

پروژه ایجاد خاصیت آنتی باکتریال آب با استفاده از نانو ذرات نقره. doc


پروژه ایجاد خاصیت آنتی باکتریال آب با استفاده از  نانو ذرات نقره. doc

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 83 صفحه

 

چکیده:

آب های سطحی پتانسیل زیادی برای آلوده شدن دارند. این آب ها از دیر باز به طور جدی از سوی جوامع شهری و مراکز صنعتی مورد تهدید بوده اند. با توجه به این که منابع آب سطحی به عنوان عمده ترین منابع آب آشامیدنی  مورد استفاده انسان  قرار گرفته اند، حفاظت آن ها از آلوده شدن سهم عمده ای در توسعه بهداشت ملی و منطقه ای دارد. بنابراین اتخاذ شیوه صحیح دفع فاضلاب که از عمده ترین آلاینده های سطحی هستند از آلودگی بیشتر این آب ها جلوگیری می کند و استفاده از روشی که بتواند آلودگی آب ها را به حداقل برساند و ایجاد خاصیت آنتی باکتریال نماید از مهم ترین فاکتور ها می باشد. آنالیز مورد استفاده در این روش آنالیز Coli-form در آب آشامیدنی می باشد. در این آنالیز مقدار میکروب اشریشیا در cc100 آب اندازه گیری می شود و مقدار آن با مقادیر استاندار مقایسه و محدوده آلوده تعیین می شود این مقدار بر طبق استاندارد آب شرب بایستی صفر باشد. در نمونه آلوده مورد آزمایش قبل از استفاده از نانو نقره مقدار میکروب اشریشیا 42 MPN می باشد و پس از استفاده از نانو نقره با شرایط بهینه و زمان ماندگاری مناسب این مقدار به صفر رسید.

 

مقدمه:

آب یکی از ضروریترین عناصر حیات بر روی زمین است و اگر چه بیش از 70 درصد از سطح کرة زمین با آب پوشیده شده است اما کمتر از 3 درصد از آن آب شیرین می باشد. از این مقدار 79 درصد به قله های یخی تعلق دارد، 20 درصد آن آب های زیر زمینی است که به راحتی قابل دسترسی نمی باشد و فقط 1 درصد آن شامل دریاچه ها و رودخانه ها و چاهها می باشد که به راحتی به دست می آید. در مجموع در هر زمان تنها یک ده هزارم از کل آب های کره زمین به سادگی در دسترس انسان قرار دارد. در دسترس بودن آب سالم و پاک یکی از مهمترین مسائل پیش روی بشر می باشد، واقعیت این است که همه به ارزش حیاتی آب برای موجودات زنده و از جمله گیاهان آگاهی دارند. هیچ کدام از محصولات دامی و کشاورزی، بدون آب کافی سالم به دست نمی آید. آب فراوان ترین ماده ی موجود در زمین است. آب در عین فراوانی، گران بهاترین مواد است. از این رو باید از آب و کمک به پاک نگه داشتن آب تلاش نمود. آب در خلقت اولیه صاف و عاری از هر گونه آلودگی خلق شده است. و لیکن از آن جایی که آب خاصیت پاک کنندگی دارد، لذا آلودگی ها بو سیله ی آب شسته و پاک می شود. از این رو آب به انواع آلودگی ها آلوده می گردد. در کنگره کارشناسان اروپایی در سال 1961 درژنو، آلودگی آب را این گونه تعریف کرده اند: جریانی از آب را آلوده می گویند که در نتیجه فعالیت های انسانی به طور مستقیم یا غیر مستقیم، ‌تر کیبات یا حالت آن  طوری تغیر یافته باشد که دیگر نتوان به آسانی در کلیه با در برخی مصارف به عنوان آب طبیعی از آن استفاده کرد. بر اساس این تعریف، فعالیت های انسانی سبب آلودگی آب ها شناخته می شود و در ایجاد مشکلات ناشی از آلودگی نقش دارند،‌‌‌ متاْسفانه به علت عدم رعایت موازین زیست محیطی از جمله تخلیه     فاضلاب های صنعتی به رود خانه ها، استفاده بی رویه و غیر منطقی از سموم و آفت کش ها، توسعه ی شهر نشینی و مهاجرت های غیر اصولی، عدم آموزش درست و کافی و غیره موجب گردیده است تا منابع آبی در معرض آلودگی های بیشتری قرار گیرد. متاْسفانه  این آلودگی ها سالانه  موجب مرگ چندین میلیون نفر در جهان می شود، که علاوه بر مشکلات روحی ضرر های اقتصادی فراوانی بدنبال دارد. از طرفی با توجه به رشد سریع جمعیت و افزایش استاندارد های زندگی نیازهای آبی بشر رو به فزونی است. لذا با توجه به موارد فوق و محدودیت منابع آبی شایسته است از آلوده  نمودن آب ها جلوگیری به عمل آید و لیکن به علت حلالیت  بالای آب کمتر آبی در اتمسفر پیدا می شود  که عاری از آلودگی ها باشد، لذا آبی را که انسان به عنوان شرب مورد استفاده قرار می دهد قبل از مصرف باید مورد تصفیه قرار گیرد.

 

فهرست مطالب:

چکیده

مقدمه

فصل اول: کلیات تحقیق

آلودگی آب

2کیفیت آب های سطحی ، رود خانه ها و نهر ها

1-3کیفیت آب های سطحی، در یاچه ها

1-4خصوصیات آب های سطحی

1-5خصوصیات آب های زیر زمینی

1-6آلودگی ها

1-7منابع آلودگی

1-8آلوده کننده  های فیزیکی ، شیمیا یی و مواد آلی

1-9  رسوبات

1-10 میکرو ارگانیزم های مضر

1-11آلودگی آب در سطح جهان

1-12آلودگی آب در سطح ایران

1-13 تصفیه آب و فاضلاب

1-14مراحل تصفیه آب

1-15فناوری نانو و تصفیه آب

فصل دوم :مروری بر ادبیات تحقیق

2-1بیماری

2-2عوامل بیماریزای اصلی آب

2-3استاندارد ها

2-4 کدورت

2-5 انعقاد

3-1 آزمایش جاربرای انتخاب مناسبترین ومقدارماده کواگولانت

 

3-2 نانو ذرات نقره

3-3 نقره طبیعی Ag

3-4مکانیسم فعالیت نانو ذرات نقره

3-5 مواد و دستگاههای لازم

3-6 روش کار استفاده شده

فصل چهارم:تجزیه و تحلیل اطلاعات

4-1نتایج و بحث

فصل پنجم:نتیجه گیری

نتیجه گیری

منابع

 

منابع ومأخذ:

1 .امیر بیگی ، حسن ، اصول تصفیه و بهداشت آب ( 1382 ) انتشارات اندیشه رفیع . تهران

  1. آلودگی آب ها / رنه کولا /ترجمه ی دکتر کوشا کریم / انتشارات و آموزش انقلاب اسلامی / تهران 1371
  2. آلودگی محیط زیست آب ، خاک و هوا / عرفان منش مجید و دکتر افیونی مجید / انتشارات ارکان /1385
  3. فیلتراسیون آب های سطحی به منظور جداسازی سوبات و گل آلودگی / دانش نوران بابک / انتشارات دانشمندان 514
  4. اصول صفیه و بهداشت آب / مهندس امیر بیگی حسن / انتشارات اندیشه رفیع / تهران 1382
  5. نگرشی بر جوانب بهداشت آب / اسکندری مکوند تاج / انتشارات عرش اندیشه / قم 1384
  6. آلودگی آب ها / موسوی سید اسمائیل / نشریه ی تبیان / ص 111
  7. دایرة المعارف ENCARTA / مقاله ی آلودگی آب / ترجمه ی حسینی سید جواد / سایت گوگل
  8. تکنولوژی آب ها آلوده ی جان . آ . بلک / ترجمه ی دکتر بنازاده ماهانی و سمنار شاد / انتشارات جهاد دانشگاهی / تهران 1364
  9. شهر آب ( آب و دانش آموز ) مؤ لف شرکت مهندس آب و فاضلاب کشور / نشر مکث / جلد 386 / ص 17
  10. بررسی ارتباط بین آلودگی میکروبی و عوامل فیزیکی و شیمیایی / کرمانشاهی ، پورمقدس ، میر خان / نشریه آب و فاضلاب تابستان / 1380 / جلد 38
  11. آب و عوامل آلوده کننده آن / نشریه جمهوری اسلامی / 1381
  12. - پیامد های آلودگی آب در سلامتی / شعبانی ناهید / نشریه همبستگی 1384
  13. آلودگی های زیست محیطی ، آلودگی آب / میری آشتیانی الهام السادات / نشریه نیکی -9 / 1378
  14. AWWA, "Inactivation of Giardia Cysts with chlorin at 0.50c to 5.0";

1987

  1. منصورى، رویا. پایان نامه کارشناسى ارشد، ارزیابى عملکرد فنى - مهندسى و بهداشتى تجهیزات ازن زنى در حذف آلایندهها از آب رودخانه کارون

EPA;"Drinking Water Regulations and Health Advisories" february

1996

  1. WHO, "Guidelines for drinking water qualities" second edition 1995

19-EPA; Method 1622, "Cryptosporidium in water by filtration/ IMS /

FA"; Jan. 1999

20-EPA; Method 1623," Cryptosporidium and Giardia in water by

filtration / IMS / FA ", April 1999

21-EPA;"Guidance for people with severely weakened Immune systems",

June 1999

22-T. Hall, J Pressdee, E Carrington," Removal of cryptosporidium by water treatment processes"

April 1994

23- EPA،Evac. Nieminski," Removal of Cryptosporidium and Giardia through Conventional and Direct filtration", July 1997

24-اکبر بهروز ، ( میزان اثر بخشی نانو تکنولوژی در شاخه های مختلف بهداشت محیط ) هشتمین همایش ملی بهداشت محیط بیمارستان امام خمینی 1384

25-بیتا آیتی ، محمد دلنواز ، سعید افرتوس ( بررسی فناوری های نوین ذرات نانو در مهندسی محیط زیست (( تصفیه آب و فاظلاب )) دانشگاه تربیت مدرس

26-مصطفی محرابی ، سید محسن میر شجاع ((  تصفیه آب با استفاده از فناوری نانو )) دانشگاه صنعت نفت

27-نانو تکنولوژی انقلاب صنعتی آینده  ( دفتر همکاری های فناوری ریاست جمهوری ) 1380

28- J. M. Montgomery، "water treatment principals and design" Juhn

wiley and sons Newyork, 1985

29- EPA; "ICR Microbial laboratory Manual"; April 1996

30-Bioscience product catalogue dynal, the solution for parasite detection in water

31-World water and Environmental Eng. vol 24. March / April 2001

32- AWWA; "A Study of Water Treatment Practices for the Removal of

Giardia Lamblia Cysts" 1989


دانلود با لینک مستقیم


پروژه ایجاد خاصیت آنتی باکتریال آب با استفاده از نانو ذرات نقره. doc

سنسورهایی از نوع ذرات بولوژیکی

اختصاصی از سورنا فایل سنسورهایی از نوع ذرات بولوژیکی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 28

 

سنسورهایی از نوع ذرات بیولوژیک

در سالهای اخیر کاربردهای زیست‌ فناوری و پزشکی فناوری میکرو ونانو (که معمولا از آن به عنوان سیستم‌های میکروی الکتریکی مکانیکی پزشکی یا زیست‌ فناوری‎(BioMEM) 1‏ نام برده می‌شود) به‌صورت فزاینده‌ای رایج شده است و کاربردهای وسیعی همچون تشخیص و درمان بیماری و مهندسی بافت پیدا کرده است. در حین این که تحقیقات و گسترش فعالیت در این زمینه هم چنان به قوت خود باقی است، بعضی از این کاربردها تجاری هم می‌شود. در این مقاله پیشرفت‌های اخیر در این زمینه را مرور کرده و خلاصه‌ای از جدیدترین مطالب در حوزه ‏BioMEM ‎‏ را با تمرکز روی تشخیص و حسگرها ارائه می‌شود.‏

بیوسنسور‌هادر کاربردهای بسیاری در پزشکی، تحلیل محیطی و صنایع شیمیائی نیاز به روشهایی جهت حس کردن مولکولهای زیستی کوچک وجود دارد. حس‌های بویایی و چشایی ما دقیقا همین کار را انجام می‌دهد و سیستم ایمنی بدن میلیونها نوع مولکول مختلف را شناسائی می‌کند. شناسائی مولکولهای کوچک تخصص بیومولکولها است، لذا اینها شیوه جدید و جذابی برای ساخت سنسورهای خاص را پیش رو قرار می‌دهد. دو مولفه اساسی در این راستا وجود دارد. المان شناساگر و روش‌هایی برای فراخوانی زمانی که المان شناساگر هدف خودش را پیدا می‌کند. اغلب المان شناساگر تحت تاثیر منبع زیست‌ فناوری تغییر نمی کند. مشکل اصلی در این کار طراحی یک واسطه مناسب به یک وسیله بازخوانی بزرگ است.

از آنتی بادی‌ها به صورت گسترده به عنوان بیوسنسور استفاده می‌شود. آنتی بادی‌ها بیوسنسورهای پیشتاز در طبیعت است، به همین دلیل توسعه تستهای تشخیصی با استفاده از آنتی بادیها، یکی از زمینه‌های بسیار موفق در بیوفناوری است. شاید آشناترین مثال تست ساده‌ای است که برای تعیین گروه خونی استفاده می‌شود. بوسنسورهای گلوکز از موفق ترین بیوسنسورهای موجود در بازار است. بیماران مبتلا به دیابت نیاز به شیوه‌های مرسوم جهت پایش سطح گلوکز خود دارد. سنسورهای قابل کاشت و غیر تهاجمی در حال توسعه است، اما در حال حاضر در دسترس‌ترین شیوه بیوسنسور دستی است که یک قطره از خون را تحلیل می‌کند.

تعریف ‏BioMEM

‏  از زمان آغاز سیستم‌های ‏MEM‏ در اوایل دهه 1970، اهمیت کاربردهای پزشکی این سیستم‌های مینیاتوری درک شد. ‏BioMEM‏‌ها در حال حاضر یک موضوع بسیار مهم است که تحقیقات بسیاری در زمینه آن انجام شده است و کاربردهای پزشکی مهم بسیاری دارد. در حالت کلی می‌توان ‏BioMEM‏‌ها را به عنوان "دستگاه‌ها ( وسایل) یا سیستم‌هایی ساخته شده با روش‌‌های الهام گرفته شده از ساخت در ابعاد میکرو /نانو، که برای پردازش، تحویل 2، دستکاری3، تحلیل یا ساخت ذرات 4 شیمیائی و بیولوژیک استفاده می‌شود"، 


دانلود با لینک مستقیم


سنسورهایی از نوع ذرات بولوژیکی

تحقیق درباره ترمودینامیک تشکیل ذرات کاتالیست Ni برای رشد نانو لوله های کر

اختصاصی از سورنا فایل تحقیق درباره ترمودینامیک تشکیل ذرات کاتالیست Ni برای رشد نانو لوله های کر دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره ترمودینامیک تشکیل ذرات کاتالیست Ni برای رشد نانو لوله های کر


تحقیق درباره ترمودینامیک تشکیل ذرات کاتالیست Ni برای رشد نانو لوله های کر

دسته بندی : علوم پایه _ شیمی

فرمت فایل:  Image result for word ( قابلیت ویرایش و آماده چاپ

حجم فایل:  (در قسمت پایین صفحه درج شده )

فروشگاه کتاب : مرجع فایل 

 


 قسمتی از محتوای متن ...

ترمودینامیک تشکیل ذرات کاتالیست Ni برای رشد نانو لوله های کربنی خلاصه: پارامترهای ترمودینامیکی وابسته به اندازه نظیر انرژی آزاد گیبس، انتالبی و انرژی برای گذار از نانو فیلم Ni به ذرات کاتالیست Ni به منظور پیش درآمدی بر رشد نا لوله های کربنی بررسی شده است. در این تحقیق ما معاملات مشتق شده از دمای ذوب نانو ذرات وابسته به اندازه را بر اساس کارای قبلی خود بررسی کرده ایم. با استفاده از این یافته های ترمودینامیکی دریافت می شود که قطر ذرات Ni سه برابر بیشتر از ضخامت فیلم اصلی است. حداقل ضخامت فیلم لازم برای تبدیل نانو فیلم به نانو ذره از روی اندازه بحرانی و پایدار Ni تبدیل شده به نانو ذره Ni بدست می آید. پیش بینی های ما در توافق وبی با نتایج آزمایشگاهی است. مقدمه: در سالهای اخیر به خاطر کاربرد وسیع و خواص بی نظیر نانو لوله های کربنی توجه زیادی به مکانیزم ساخت و تشکیل نانو لوله های کربنی می شود، یکی از روشهای مرسوم برای تشکیل نانو لوله های کربنی تجزیه بخار شیمیایی(CVD) است که این ساختار گرانیتی بر روی سطح فلز حدودا در دمای زیر در تجزیه کربن که بصورت گازی است شکل می گیرد در این فرایند معمولا نانو ذرات کاتالیست ابتدا بر روی سطح بوسیله عملیات حرارتی فیلم نازک رسوب کرده، تشکیل می شوند که این نانو ذرات در جوانه زنی و تشکیل نانو لوله های کربنی شرکت می کنند. اندازه اولیه و تحرک کاتالیست می تواند بطور مشخصی بر تشکیل و پیکربندی نانو لوله های کربنی و دیگر نانو لوله ها یا نانو وایرها تاثیر بگذارد. ترمودینامیک پایه برای تشکیل نانو ذرات کاتالیست توسط jiang et al بیان شده است که یک مدل برای پیش بینی شرایط یک بعدی برای تبدیل نانو فیلم Ni به نانو ذره Ni و سپس تشکیل نانو ذرات و پوشانده شدن با یک ردیف کربن پیشنهاد کرده است. اساس این مدل و بررسی ها بر تبعیت اندازه از نقطه ذوب نانو ذرات است پیش بینی می شود که شعاع ذرات تبدیل شده 5/1 برابر بزرگتر از ضخامت فیلم اولیه است. Liang et al ترمودینامیک تشکیل نانو ذرات را بوسیله فرایند جوانه زنی وابسته به شکل و حالت ماده(جامد، مایع یا گاز) منبع است که در گزارشات قبلی مورد بررسی قرار نگرفته اند. در این کار پارامترهای ترمودینامیکی نظیر آنتالپی، انتروپی و انرژی آزاد گیبس برای مدل کردن اندازه بحرانی و پایدار نانو ذرات Ni در نظر گرفته شده اند. این پارامترهای ترمودینامیکی برای پیش بینی تشکیل نانو ذرات Ni از حمام مذاب و منبع فیلم نازک مورد استفاده قرار می گیرند. در اینجا بررسی دمای ذوب به عنوان تابعی از اندازه بر مبنای کارهای قبلی در نظر گرفته شده است و نتایج با داده های آزمایشگاهی و گزارشات دیگر مقایسه شده اند. 2- مدل و بحث: 1-2: پارامترهای ترمودینامیکی نانو ذره و نانو فیلم: تغییرات کلی انرژی آزاد(G) برای تشکیل یک جامد از مایع طی فرایند جوانه زنی شامل دو بخش انرژی حجمی و تغییرات انرژی سطحی است. (1) g: تغی

تعداد صفحات : 15 صفحه

  متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

پس از پرداخت، لینک دانلود را دریافت می کنید و ۱ لینک هم برای ایمیل شما به صورت اتوماتیک ارسال خواهد شد.

 
« پشتیبانی فروشگاه مرجع فایل این امکان را برای شما فراهم میکند تا فایل خود را با خیال راحت و آسوده دانلود نمایید »
/images/spilit.png
 

دانلود با لینک مستقیم


تحقیق درباره ترمودینامیک تشکیل ذرات کاتالیست Ni برای رشد نانو لوله های کر

امکان سنجی فیلتراسیون آکوستیکی جهت جذب ذرات خروجی از اگزوز موتورهای دیزل(مرکز توسعه خودرو و کار)

اختصاصی از سورنا فایل امکان سنجی فیلتراسیون آکوستیکی جهت جذب ذرات خروجی از اگزوز موتورهای دیزل(مرکز توسعه خودرو و کار) دانلود با لینک مستقیم و پر سرعت .

امکان سنجی فیلتراسیون آکوستیکی جهت جذب ذرات خروجی از اگزوز موتورهای دیزل(مرکز توسعه خودرو و کار)


امکان سنجی فیلتراسیون آکوستیکی جهت جذب ذرات خروجی از اگزوز موتورهای دیزل(مرکز توسعه خودرو و کار)

امکان سنجی فیلتراسیون آکوستیکی جهت جذب ذرات خروجی از اگزوز موتورهای دیزل(مرکز توسعه خودرو و کار)

فرمت word(قابل ویرایش)

تعداد صفحات:  110

فهرست مطالب
1-فصل اول: مقدمه 1
2- فصل دوم: مروری بر ادبیات و اصول و مبانی نظری 4
2-1 مقدمه 5
2-2 سیستم جدا ساز ذرات معلق در گازها 8
2-2-1 صافی های کیسه ای 8
2-2-2 ته نشین کننده های ثقلی 8
2-2-3 شوینده ها 9
2-2-4 سیکلونها 9
2-2-5 نشست دهنده الکتروستاتیک 9
2-3 زمینه تاریخی 10
2-4  مکانیزمهای انباشت آکوستیک 11
2-4-1 فعل و انفعالات اورتوکینتیک 11
2-4-2 فعل و انفعالات هیدرودینامیک 17
2-4-3 واکنشهای آشفتگی آکوستیک 20
2-4-4 روان سازی آکوستیک 19
2-4-5 توده آکوستیک 23
2-5 مدلهای شبیه سازی فعلی 24
2-5-1 مدل وولک 24
2-5-2 مدل شو 25
2-5-3  مدل تیواری 25
2-6 مدل سانگ 25
3-فصل سوم: روشها و تجهیزات 27
3-1 مقدمه 28
3-2 روش شبیه سازی انباشت آکوستیک 28
3-2-1 فرضیات انجام شده در مدل سازی 28
3-2-2 الگورِیتم مدل سازی 29
3-3  سیستم آزمایشگاهی فیلتراسیون آکوستیکی 30
3-3-1 سیستم آزمایشگاهی اندازه گیری توزیع اندازه ذرات 30
3-3-2 آزمایشات مربوط به دستگاه نشت دهنده آکوستیکی 33
3-3-3 مواد مورد استفاده 41
3-4 کالیبراسیون وسایل آزمایشگاهی  43
4- فصل چهارم: نتایج و تفسیر آنها 45
4-1 مقدمه 46
4-2 نتایج آزمایشگاهی 47
4-2-1  اندازه گیری توزیع اندازه و غلظت کلی ذرات
خروجی از اگزوز موتورهای دیزلی 46
4-3 آزمایشات مربوط به دستگاه نشست دهنده آکوستیکی 49
4-3-1 آزمایش بدست آوردن فرکانس های بحرانی 49
4-3-2 رسم پروفیل فشار آکوستیکی در طول لوله 52
4-3-3 اعمال امواج آکوستیکی بر روی جریان ایروسل 55
4-3-3-1 اعمال امواج آکوستیکی برروی ذرات درحالت بدون دبی و ساکن 55
4-3-3-2 اعمال امواج بر روی جریان ایروسل 62
4-4 بررسی تأثیر عوامل موثر در بازده فیلترهای آکوستیکی
در خروجی موتور های دیزل 67
4-4-1 بررسی تأثیر دبی عبوری از محفظه 65
4-4-2  بررسی اثر توان اعمالی امواج 72
4-4-3 بررسی تاثیر دما و فشار 75
4-4-4  تأثیرات فرکانس صدا 77
4-4-5 اثر اندازه ذرات 77
5- فصل پنجم 79
فهرست مراجع 83
ضمیمه 1 85
ضمیمه 2 88
ضمیمه 3 95

فهرست نمودارها

شکل 2-1- حجم انباشت آکوستیک 12
شکل 2-2- حجم واقعی انباشت آکوستیکی 14
شکل 2-3- مکانیزم های آشفتگی 20
شکل 2-4- شکل موج سرعت آکوستیک درشدت بالا 22

شکل 3-1- دستگاه برخورد دهنده چند مرحله ای 31
شکل 3-2- سیستم حذف ذرات بزرگ 32
شکل 3-3- دستگاه شمارنده ذرات 33
شکل 3-4- منبع امواج آکوستیکی 34
شکل 3-5- دستگاه منبع ایجاد سیگنال 35
شکل 3-6- دستگاه Amplifier 36
شکل 3-7- دستگاه فرکانس متر 36
شکل 3-8- بلندگو و horn 37
شکل 3-9- صفحه بازتاب کننده امواج و لوله فلزی برای خروج گازها 38
شکل 3-10- فشار سنج دیجیتالی 38
شکل 3-11- دستگاه تولید کننده ایروسل تک توزیعی 39
شکل 3-12- دستگاه مولد ایروسل چند توزیعی 40
شکل 3-13- دبی سنج 41
شکل 3-14- توزیع اندازه ذرات خروجی از دستگاه تولید کننده ایروسل 43

شکل 4-1- توزیع جرمی ذرات کوچکتر از 10 میکرون خروجی از اگزوز موتورهای دیزلی 46
شکل 4-2-  درصد جرمی توزیع ذرات کوچکتر از 10 میکرون خروجی از اگزوز موتورهای دیزلی 46
شکل 4-3- توزیع فشار آکوستیکی در cm10 از بالای لوله 49
شکل 4-4- توزیع فشار آکوستیکی در cm17 از بالای لوله 49
شکل 4-5- توزیع فشار آکوستیکی در cm150 از بالای لوله 50
شکل 4-6- مقایسه نتایج نظری و آزمایشگاهی برای فرکانس 200 (Hz) بر اساس ماکزیمم فشار 51
شکل 4-7- مقایسه نتایج نظری و آزمایشگاهی برای فرکانس 650 (Hz) بر اساس مینیمم فشار 51
شکل 4-8- مقایسه نتایج نظری و آزمایشگاهی برای فرکانس 830 (Hz) بر اساس ماکزیمم فشار 52
شکل 4-9- setup استفاده شده در حالت بدون جریان 54
شکل 4-10-  تست نشست آکوستیکی برای حالت بدون دبی و فرکانسHz 200 56
شکل 4-11- محل نقاطی که در آن ایروسل ها به دیواره چسبیده اند 57
شکل 4-12- تست نشست آکوستیکی برای حالت بدون دبی و فرکانسHz 650  58
شکل 4-13- تست نشست آکوستیکی برای حالت بدون دبی و فرکانسHz 830  59
شکل 4-14- setup استفاده شده برای اعمال امواج بر روی جریان (Q=250 L/h 61
شکل 4-15- تست نشست آکوستیکی برای حالت  Q=250 L/hourو فرکانسHz 830  62
شکل 4-16- setup استفاده شده برای اعمال امواج بر روی جریان (Q=27.8 L/min) 63
شکل 4-17- تست نشست آکوستیکی برای حالت  Q=27.8 L/minو فرکانسHz 830  64
شکل 4-18- setup استفاده شده برای استفاده از ذرات توزیع اندازه مختلف و استفاده از دستگاه شمارنده ذرات 66
شکل 4-19- تاثیر دبی جریان بر بازده فیلتراسیون 68
شکل 4-20- تاثیر زمان اعمال جریان بر  اندازه ذرات در مدل سازی عددی 69
شکل 4-21- بررسی تاثیر زمان اعمال امواج در توزیع اندازه ذرات و مقایسه بین نتایج مدل سازی عددی و نتایج آزمایشگاهی در فرکانس 200 Hz در حالت لوله سر بسته 70
شکل 4-22- تاثیر توان الکتریکی امواج بر بازده فیلتراسیون 72
شکل 4-23- تاثیر دما در نرخ انباشت آکوستیکی 74
شکل 4-24- تاثیر فشار گاز در نرخ انباشت آکوستیکی 75
شکل 4-25- تاثیر اندازه ذرات در انباشت آکوستیکی 76

فهرست جداول

جدول 4-1- فرکانس های بحرانی 48
جدول 4-2- توزیع فشار آکوستیکی در فرکانس های مختلف 48
جدول 4-3- بررسی اثر دبی در بازده فیلتراسیون 67
جدول 4-4- بررسی اثر توان صوتی در بازده فیلتراسیون 71

لیست علائم

up سرعت ذره در میدان آکوستیک
η فاکتور گاز برد (entrainment factor)
ω فرکانس زاویه ای آکوستیک
t زمان
φ تعویق فازی حرکت ذره نسبت به تعویق فازی حرکت گاز
Ua دامنه سرعت آکوستیک
زمان استراحت ذره
چگالی ذره
µ لزجت سینماتیکی
d و a قطر ذره
cε بازده برخورد
nv تعدد عددی ذرات کوچک در حجم انباشت بعد از پر شدن
fε بازده پرشدگی
تابع فرکانس انباشت یا ضریب انباشت
g12 تابع تعامل هیدرودینامیکی
pa  فشار محیط محفظه انباشت
P فشار آکوستیکی
k عدد موج
ρo چگالی هوا
λ عدد موج
Q دبی جریان ایروسل
V سرعت عبور ذره از میان محفظه
E بازده فیلتراسیون
Nf تعداد ذرات بعد از فیلتراسیون
Ni تعداد ذرات قبل از فیلتراسیون
γ نسبت گرمای ویژه
R ثابت جهانی گازها
CI اشتعال تراکمی
SI اشتعال جرقه ای

فصل اول
مقدمه

زیست موجودات زنده به ویژه انسان در معرض هجوم انواع آلودگیها است که آلودگی هوا یکی از مهمترین آنها است. بسیاری از مراکز صنعتی و تولیدات آنها، از عوامل مهم تولید آلاینده های هوا میباشند و از این میان خودروها سهم عمده این آلودگی را در شهرها به عهده دارند.
به موازات رشد و ترقی جوامع که موجب تخریب طبیعت و در نتیجه آلوده کردن بیشتر آن شده است، سازمانهای حفاظت از محیط زیست با وضع قوانینی، سعی در کاهش آلودگیها دارند. برای کاهش آلودگی هوای ناشی از خودروها، دو روش اساسی وجود دارد:
الف: کاهش تولید آلاینده ها
ب: جلوگیری از انتشار آنها در محیط
کاهش تولید آلاینده ها از طریق بهبود کیفیت سوخت و طراحی بهینه سیستم احتراق و یا دوباره سوزاندن گازهای حاصل از احتراق امکان پذیر است و برای جلوگیری از انتشار آلاینده ها در محیط از سیستم های تصفیه و پالایش گازهای خروجی از اگزوز استفاده می شود. روشهای کاهش تولید آلاینده ها مستلزم صرف هزینه های بسیاری می باشد که امروزه در کشور ما توجیه اقتصادی ندارد، لذا در شرایط کنونی و به عنوان یک راه حل سریع و ارزان، تصفیه گازهای خروجی اگزوز شیوه مناسبتری می باشد. آلایندههای منتشره از موتور خودروها عبارتند از: هیدرو کربن ها (HC)، مونوکسید کربن (CO)، اکسیدهای نیتروژن (NOx) و ذرات معلق.
در موتورهای دیزلی، مهمترین و بیشترین آلودگی را ذرات خروجی اگزوز تشکیل می دهند و بنابراین موضوع این پروژه پالایش گازهای خروجی اگزوز موتورهای دیزلی از ذرات آلاینده میباشد. این موضوع در مرحله اول مستلزم بررسی خصوصیات ذرات آلاینده و در مرحله دوم نیازمند بررسی سیستمهای جداسازی فازهای جامد- گاز از یکدیگر می باشد.
در این تحقیق ذرات آلاینده به عنوان ایروسلهایی با قطر تقریبی 10-01/0 میکرون شناخته شدند که حداکثر تجمع جرمی آنها در محدوده کمتر از 4/0 میکرون است. ایروسل به معنای هر    ذره ای اعم از جامد یا مایع که در یک محیط گازی یا اتمسفر معلق باشند و سرعت سقوط آنها قابل اغماض باشد، گفته می شود.
برای جداسازی این ذرات هیچیک از سیستمهای جداسازی گاز- جامد نظیر شوینده ها، فیلترهای الیافی و سیکلونها و فیلترهای الکترواستاتیک  مفید واقع نشدند. زیرا برخی از این سیستمها نظیر فیلتر های الیافی، افت فشار زیادی ایجاد می کنند که برای به کارگیری بر روی گازهای خروجی اگزوز مناسب نمی باشد و همچنین برای این توزیع اندازه ذرات، از کارآیی کافی برخوردار نمی باشند و یا بسیار حجیم و بزرگ می شوند. نهایتاً نشست دهنده آکوستیکی (که امروزه به عنوان مکمل سیستم های فیلتراسیون فعلی استفاده می شوند) انتخاب بهتری به نظر آمد و برای عملکرد آن و امکان سنجی استفاده عملی، مطالعات و آزمایشهای جامع تری آغاز گردید.
برای انجام و شروع آزمایشات لازم بود در وحله اول خواص گازهای خروجی از اگزوز موتورهای دیزلی و مکانیزم  نحوه عملکرد امواج آکوستیکی در انباشت ذرات را بشناسیم. بدین منظور برای شناخت خواص گازهای خروجی از اگزوز موتورهای دیزلی آزمایشاتی انجام شد که نتایج این آزمایشات در فصول آتی آمده است. در مرحله بعد اطلاعات مربوط به تئوری موضوع جمع آوری شد و از بین تئوری های موجود نظریه آقای سانگ انتخاب و بر این مبنا کد عددی برای مدل سازی انباشت آکوستیکی  نوشته شد.
پس این مراحل، شبیه سازی آزمایشگاهی آغاز شد و آزمایشهایی صورت گرفت به این ترتیب که ایروسلهای تولیدی توسط موتورهای دیزلی شبیه سازی شده و عملکرد یک نمونه نشست دهنده آکوستیکی استوانه ای برای حصول کارآیی میانگین حدود 90 درصد در شرایط مختلف بررسی گردید. نتایج آزمایشگاهی نشان میداد که سیستم فیلتراسیون آکوستیکی دارای کارایی بالایی در حذف ذرات معلق در گازها دارد و می توان برای فیلتراسیون گازهای خروجی از موتورهای دیزلی استفاده کرد.
فصول پایان نامه حاضر در برگیرنده مطالبی است که به طور اجمالی جهت گیری و عملکرد ما را در این فعالیت روشن می سازد. فصل دوم در مورد روشهای موجود در فیلتراسیون ذرات معلق در گازها و گازهای خروجی از موتورهای دیزل، بیشینه استفاده از امواج آکوستیکی و تئوری های موجود در زمینه انباشت آکوستیکی می باشد. فصل سوم به بررسی روش مدل سازی عددی، فرضیات مورد استفاده در شبیه سازی و تشریح وسایل و سیستمهای آزمایشگاهی که ساخته یا استفاده شده است می پردازد. در فصل چهارم به شرح نتایج مدل سازی عددی و نتایج آزمایشگاهی می پردازد. فصل پنجم راجع به جمع بندی نتایج آزمایشگاهی ،نتیجه گیری و بحث پیرامون مشکلات عملی و صنعتی شدن طرح می باشد.
فصل دوم
مروری بر ادبیات
و
اصول و مبانی نظری

2-1 مقدمه:
گازهای خروجی از موتور خودروها، یکی از عوامل عمده آلودگی هوای جهان می باشد. اخیرا تحقیقات و پیشرفت هایی انجام شده است که کاهش عمده ای در انتشار آلاینده های خروجی از موتور ایجاد کرده است، ولی جمعیت در حال رشد و تعداد بیشتر خودروهای سواری، بمعنای آنست که این مشکل برای مدتی طولانی، در سالهای آینده نیز وجود خواهد داشت.
بدین ترتیب قوانینی در  کشورهای صنعتی وضع شد که میزان مجاز گازهای آلاینده خروجی را محدود می ساخت. این امر، محدودیت عمده ای در توسعه و تکامل موتور خودروها، در طی دهه 1940 و 1990 ایجاد کرد.  اگر چه آلاینده های مضر منتشر شده توسط موتورها، از میزان دهه 1940 بیش از 90% کاهش یافتند، ولی هنوز هم مشکل زیست محیطی بزرگی محسوب میشوند.
چهار آلاینده اصلی که توسط موتورهای احتراق داخلی تولید می شود ، هیدرو کربن ها (HC)، مونوکسید کربن (CO)، اکسیدهای نیتروژن (NOx) و ذرات معلق می باشند. به شیوه دیگر نیز میتوان به دو قسمت آلودگی های گازی (که شامل مونوکسیدهای کربن، هیدرو کربن ها و اکسیدهای نیتروژن و سولفور ) و  ذرات آلاینده معلق درگازهای خروجی از موتور خودروها تقسیم بندی کرد.
کارهایی که در مورد دسته اول آلودگی ها انجام شده است شامل :
– تصفیه و کاهش ناخالصی های سوخت مثل از بین بردن ناخالصی هایی گوگرد و ….
– استفاده از کاتالیزورها برای تبدیل گازهای پر خطر به گازهای کم خطر تر مثل تبدیل CO و No به   CO2 ,N2 , H2O

در مورد دسته دوم آلاینده ها یعنی ذرات معلق در گازها، کارهای جامع و تکمیلی انجام نشده است. در مورد خودروهای بنزینی SI تولید ذرات آلاینده به مراتب از خودروهای دیزلی CI کمتر می باشد، بنابراین بحث آتی در مورد خودروهای دیزلی  ادامه میدهیم.
گاز خروجی موتورهای CI ، محتوی ذرات دوده کربن جامد  هستند که در طی احتراق در نواحی سوخت غنی، در داخل سیلندر تولید می شوند. این ذرات به صورت دود در گازهای خروجی دیده   می شوند و آلودگی نامطلوب و بد بویی میباشند. حداکثر چگالی آلاینده های ذرات جامد معلق، هنگامی رخ می دهد که موتور در حالت WOT، تحت بار است. در این شرایط برای تامین حداکثر توان، مقدار حداکثر سوخت پاشش می شود، که این امر به ایجاد مخلوط غنی و اقتصاد ضعیف در مصرف سوخت منجر می شود. این شرایط می تواند در دود زیاد گازهای خروجی کامیون یا لوکوموتیو در حالت بالا رفتن از سربالایی، یا حرکت از حالت توقف دیده شود.
ذرات دوده، توده هایی از کربن جامد کروی هستند. این کره ها دارای قطر هایی از 10 nm تا 80nm می باشند، که اکثر آنها در محدوده اندازه nm 15-30  قراردارند]1[.
تولید ذرات معلق دوده کربن به میزان زیادی در موتورهای جدید  CI، با فناوری طراحی پیشرفته در سوخت پاش ها و هندسه محفظه احتراق، کاهش یافته است. با افزایش زیاد بازده و سرعت های اختلاط سوخت و هوا ، می توان در هنگام شروع احتراق، از ایجاد نواحی بزرگ با مخلوط سوخت غنی، جلوگیری کرد. دوده کربن در این نواحی تولید می شود، و با کاهش حجم این نواحی، مقدار دوده تولیدی بسیار کمتر می گردد. سرعتهای اختلاط افزوده، با ترکیبی از پاشش غیر مستقیم سوخت، هندسه بهتر محفظه احتراق، طراحی بهتر سوخت پاش و فشارهای بیشتر پاشش و گرم شدن محلهای برخورد افشانده، و سوخت پاش هایی با کار به کمک هوا، حاصل می شوند. پاشش غیر مستقیم به داخل محفظه ثانویه، که چرخش و آشفتگی زیاد جریان را افزایش می دهد، به میزان زیادی فرایند اختلاط هوا و سوخت را سرعت میبخشد. طراحی بهتر نازل و فشارهای بزرگتر پاشش ، قطرات سوخت ریزتری ایجاد می کند که سریعتر تبخیر و مخلوط می شوند. پاشش بر روی سطح داغ، که در سوخت  پاش های با کار به کمک هوا وجود دارد، باعث تسریع در تبخیر می گردد.
در برخی موتورهای جدید خودرو سواری آخرین مدل CI (مرسدس)، تولید ذرات معلق به اندازه ای کاهش یافته است که این بدون تله ذرات معلق ، با استانداردهای سخت گیرانه مطابقت دارد. تله ذرات معلق یکی از سیستمهایی است که برای فیلتراسیون در خودرو استفاده میشود.
سیستم های موتور با اشتعال تراکمی، برای کاهش مقدار ذرات معلق آزاد شده به هوای محیط، به     تله های ذرات معلق در جریان گازهای خروجی، مجهز می باشند. تله ها، سیستم های فیلتر مانندی هستند که اغلب از سرامیک به شکل یکپارچه یا توری مانند، و یا از توری سیمی فلزی ساخته میشوند. تله ها معمولا 60% تا 90% از ذرات معلق موجود در گازهای خروجی را حذف می کنند. هنگامیکه تله ها ذرات دود را می گیرند، کم کم با ذرات معلق پر می شوند. این امر باعث محدود شدن جریان گازهای خروجی می گردد و فشار پس از موتور را می افزاید. افزایش فشار  پس از موتور، باعث گرم تر شدن دمای کار موتور می گردد، و دمای گازهای خروجی و مصرف سوخت را می افزاید. برای کاهش این محدودیت جریان، تله های ذرات معلق، هنگام شروع به اشباع شدن، بازیابی        می شوند. بازیابی، شامل سوزاندن ذرات معلق، با اکسیژن اضافی موجود در گازهای خروجی موتور CI است، که در شرایط مخلوط فقیر کار می کنند.
دوده کربن دردمای حدود oC500-650 مشتعل می شود، در حالیکه گازهای خروجی موتور CI ، در شرایط کاکرد عادی ، در دمای 150 تا 350  می باشند. زمانیکه تله ذرات معلق، با دوده پر می شود و جریان را محدود می سازد، دمای گازهای خروجی افزایش می یابد ولی این دما، هنوز برای مشتعل کردن دوده و بازیابی تله ذرات معلق، کافی نیست. در برخی سیستم ها، مشتعل کننده های شعله ای اتوماتیک استفاده میشود، و زمانی احتراق را در کربن اغاز می کند که افت فشار در  تله ذرات معلق، به مقدار از پیش تعیین شده ای برسد. این مشتعل کننده ها می توانند گرم کن های الکتریکی یا        نازلهای شعله ای باشند که از سوخت دیزل استفاده می کنند. اگر ماده کاتالیزور در تله نصب شود، دمای مورد نیاز برای مشتعل کردن دوده کربن ،به محدوده350 تا 450 درجه سانتیگراد کاهش     می یابد. برخی از این تله ها می توانند، با افزایش دمای گازهای خروجی در اثر افزایش فشار پس از موتور، به صورت اتوماتیک با خود اشتعالی، بازیابی شوند. سایر سیستم های کاتالیزوری، از مشتعل کننده های شعله ای استفاده می کنند.
روشی دیگر برای کاهش دمای اشتعال دوده کربن و افزایش خود بازیابی در تله ها، استفاده از    افزودنی های کاتالیزوری در سوخت دیزل است. این افزودنی ها عموما حاوی ترکیبات مس یا ترکیبات آهن هستند و حدود 7  گرم افزودنی در 1000 لیتر از سوخت، عادی می باشد.
برای آنکه دما به اندازه کافی گرم نگه داشته شود تا موجب خود بازیابی سیستم کاتالیزوری گردد،     تله ها می توانند تا حد ممکن نزدیک به موتور و حتی قبل از توربوشارژ نصب شوند.
در برخی موتورهای ثابت بزرگتر (مثلا برای تولید برق) و برخی تجهیزات ساختمانی و کامیونهای بزرگ، زمانیکه تله ذرات معلق نزدیک پر شدن است تعویض می گردد. سپس، تله تعویض شده با سوزاندن کربن در کوره، در بیرون از موتور، بازیابی می شود. این تله بازیابی شده می تواند مجددا استفاده شود.
برای تعین زمان ضروری برای بازیابی تله ذرات بواسطه دوده جمع شده زیادی، روشهای معینی استفاده می شود. رایج ترین روش، اندازه گیری افت فشار جریان گازهای خروجی، از درون تله ذرات معلق می باشد. هنگامیکه افت فشار به مقدار از پیش تعیین شده رسید، بازیابی شروع می گردد. افت فشار، همچنین تابعی از نرخ جریان گازهای خروجی می باشد، و این موضوع باید در کنترلهای بازیابی، برنامه ریزی شود. روش دیگری که برای حس کردن دوده جمع شده استفاده می شود، ارسال امواجی فرکانس رادیویی میان تله، و تعیین درصد جذب آن امواج می باشد. دوده کربن، امواجی رادیویی را جذب می کند، درحالیکه سازه سرامیکی ، امواج جذب نمی کند. از اینرو مقدار  دوده جمع شده میتواند با درصد کاهش سیگنال رادیویی، تعیین گردد. این روش، کسر آلی قابل حل(SOF) را به آسانی آشکار نمی سازد. عملکرد تله های جدید ذرات معلق، بویژه برای خودروهای سواری، چندان رضایت بخش نیستند. زمانی این تله ها به بازیابی مجهز شوند ،گرانقیمت و پیچیده هستند، و عمری طولانی مدت ندارد. تله کاتالیزوری ایده آل میتواند، ساده، اقتصادی و قابل اطمینان باشد، قادر به خود بازیابی خواهد بود، و حداقل افزایش در مصرف سوخت را ، ایجاد خواهد کرد.
حال به صورت خلاصه به بررسی سیستم جدا ساز ذرات معلق در گازها می پردازیم.

2-2 سیستم جدا ساز ذرات معلق در گازها
2-2-1 صافی های کیسه ای (الیافی)
در این عملیات سیال حاوی ذرات از یک محیط فیلتر عبور کرده، ذرات در فیلتر گیر می کنند و سیال تمیز خارج می گردد. محیط فیلتر می تواند برجی  از دانه های ریز مانند شن، ماسه و … باشد یا یک لایه پارچه یا کاغذ و یا ضخامتی از الیاف درهم باشد]2[. نوع بافت پارچه و حالت الیاف روی افت فشار و بازدهی فیلتر موثر می باشند اهمیت این فیلترها در جداسازی ذرات جامد به صورت خشک (پودری) می باشد. عمل فیلتراسیون باید در دمایی بالاتر از نقطه شبنم گاز صورت گیرد. افت فشار فیلترها بسته به نوع محیط فیلتری از 5/0 تا 5/2 کیلو پاسکال می باشد و سرعتهای فیلتراسیون بین 3/0 تا 3 متر در دقیقه می باشد. این فیلترها به دلیل ایجاد افت فشار در سیستم فیلتراسیون، نیاز به تعویض سریع، کاهش دبی عبوری با گذشت زمان به صورت کارآمد نمی توانند در سیستم فیلتراسیون خروجی موتورهای دیزل مورد استفاده قرار بگیرند، با وجود این در برخی از موارد از این فیلترها استفاده میشود.


دانلود با لینک مستقیم


امکان سنجی فیلتراسیون آکوستیکی جهت جذب ذرات خروجی از اگزوز موتورهای دیزل(مرکز توسعه خودرو و کار)

حرارت و درخشندگی نوری خواص نمک طعام: منگنز، نمک طعام: مس نانو ذرات تولید شده با استفاده رسوبی و روش سونو شیمی(زبان اصلی انگلیسی

اختصاصی از سورنا فایل حرارت و درخشندگی نوری خواص نمک طعام: منگنز، نمک طعام: مس نانو ذرات تولید شده با استفاده رسوبی و روش سونو شیمی(زبان اصلی انگلیسی) دانلود با لینک مستقیم و پر سرعت .

حرارت و درخشندگی نوری خواص نمک طعام: منگنز، نمک طعام: مس نانو ذرات تولید شده با استفاده رسوبی و روش سونو شیمی(زبان اصلی انگلیسی)


حرارت و درخشندگی نوری خواص نمک طعام: منگنز، نمک طعام: مس نانو ذرات تولید شده با استفاده رسوبی و روش سونو شیمی(زبان اصلی انگلیسی)

نوع فایل:pdf فشرده شده با برنامه winrar 

تعدادصفحات:7

قیمت مقاله خریداری شده به دلار:35.95$ به پول ایران:1,163,702 ریال

خریداری شده ازسایت:http://www.sciencedirect.com/

Thermoluminescence and photoluminescence properties of NaCl:Mn, NaCL:Cu nano-particles produced using co-precipitation and sono-chemistry methods

چکیده
از NaCl: مس و NaCl: نانوذرات منگنز (NPS) با استفاده از روش هم رسوبی و سونو شیمی تولید شد و حرارت خود را (TL) و (PL) خواص درخشندگی نوری مورد مطالعه قرار گرفت. با کاهش اندازه ذرات افزایش قابل توجهی در حساسیت نمونه به اشعه گاما با دوز بالا مشاهده شد. نانوذرات تولید شده توسط روش سونو شیمی اندازه کوچکتر، ساختار همگن، حساسیت بیشتر به اشعه گاما بالا و محو شدن کمتر از کسانی که تولید شده توسط روش هم رسوبی.

کلید واژه ها
همرسوبی,سونو شیمی,حرارت,درخشندگی نوری,نانوذرات


دانلود با لینک مستقیم


حرارت و درخشندگی نوری خواص نمک طعام: منگنز، نمک طعام: مس نانو ذرات تولید شده با استفاده رسوبی و روش سونو شیمی(زبان اصلی انگلیسی)