دانلود با لینک مستقیم و پر سرعت .
چکیده :
الکترومایوگرافی (EMG) مطالعه عملکرد عضله از طریق تحلیل سیگنالهای الکتریکی تولید شده در حین انقباضات عضلانی است که اندازهگیری آن همراه با تحریک عضله است که میتواند شامل عضلات ارادی و غیرارادی شود این سیگنال به طور کلی به دو دستهی بالینی وKine Siological EMG تقسیمبندی می شود که خود دستهی دوم باز دونوع سوزنی وسطحی را در خود جای میدهدکه هر کدام درجای خود بسته به نوع ماهیچه و بیماری مورد استفاده قرار می گیرند در الکترومایوگرافی آنچه از اهمیت ویژهای برخوردار است نوع طراحی الکترود است که در این مقاله به سه نوع طراحی الکترود اشاره شده است . برای اندازهگیری و ثبت سیگنال الکترومایوگرافی مکان قرار دادن الکترود بسیار مهم میباشد . الکترومایوگرافی موضوع تحقیقی بسیار گستردهای میباشد و پرداختن به هر قسمت آن خود به زمان بسیار زیادی احتیاج دارد در اینجا به بررسی این سیگنال در حرکت دست میپردازیم . برای شناسایی سیگنال دست از طبقهبندی الگوی EMG استفاده میکنند که این طبقهبندی روشهای گوناگونی از جمله swids ، هوش مصنوعی sofms و غیره می باشد که روش مورد بررسی در این تحقیق طبقه بندی الگوی EMG با استفاده از نقشههای خود سازمانده می باشد sofm یک شبکه رقابتی یادگیری بدونکنترلی است که دارای الگوی طبقهبندی میباشد . گر چه طبقه بندی الگوهای EMG بسیار مشکل میباشد اما به حرکت دست کمک زیادی میکند بیشترین استفاده EMG برای نوسازی دست است نوسازی دست اصولاً با استخوان بندی کنترل شده انجام میشود . فعالیت الکتریکی ماهیچهها به ما این اجازه را میدهد که بدانیم آیا بیمار در سعی در تکان دادن انگشتها میکند یا نه .
هدف از ارائه استخوان بندی خارجی برای این است که بیمار احساس استقلال بیشتری داشته باشد برای کنترل دستهای مصنوعی مدار آنالوگی طراحی شده است که برای کمک به افراد مقطوع العضو مناسب است که ما در این جا همه این مباحث گفته شده را مورد تحلیل و بررسی قرار میدهیم .
فهرست مطالب
عنوان صفحه
چکیده
مقدمه 1
فصل اول : آشنایی با الکترومایوگرافی
1-1 مقدمه 3
2-1 الکترومایوگرافی چیست ؟3
3-1 منشأ سیگنال EMG کجاست ؟7
1-3-1 واحد حرکتی 7
4-1 آناتومی عضله8
1-4-1 رشته عضلانی واحد8
2-4-1 ساختار سلول ماهیچه 8
5-1 انقباض عضلانی 9
6-1 تحریکپذیری غشاء عضله 11
7-1 تولید سیگنال EMG12
1-7-1 پتانسیل عمل 12
8-1 ترکیب سیگنال EMG14
1-8-1 انطباق واحدهای حرکتی 14
9-1 فعال سازی عضله 15
10-1 طبیعت سیگنال MMG16
11-1 فاکتورهای موثر بر سیگنال EMG18
فصل دوم :انواع سیگنالهای الکترومایوگرافی و روشهای طراحی
1-2 انواع EMG 21
2-2 الکترومایوگرافی سطحی : ردیابی و ثبت 22
1-2-2 ارتباطات کلی 22
2-2-2 مشخصههای سیگنال EMG23
3-2 مشخصههای نویز الکتریکی 24
1-3-2 نویزمحدود شده 24
2-3-2 آرتی فکتهای حرکتی 24
3-2-2 ناپایداری ذاتی سیگنال 25
3-2 بیشینه سیگنال EMG25
4-2 طراحی الکترود و آمپلی فایر 26
5-2 تقویت تفاضلی 26
6-2 امپدانس داخلی 28
7-2 طراحی الکترودفعال 29
8-2 فیلترینگ 29
9-2 استقرار الکترود 30
10-2 روش مرجح مصرف 30
11-2 هندسه الکترود30
1-11-2 نسبت سیگنال به نویز 31
2-11-2 پهنای باند32
3-11-2 سایر ماهیچه نمونه 32
4-11-2 قابلیت cross talk33
12-2 بار موازی الکترود 33
13-2 قرار دادن الکترود EMG34
1-13-2 تعیین مکان و جهتیابی الکترود 34
2-13-2 نه روی نقطه محرک 35
3-13-2 نه روی نقطه محرک 36
4-13-2 نه در لبهی بیرونی ماهیچه 37
14-2 موقعیت الکترود نسبت به فیبرهای ماهیچه 37
15-2 قرار دادن الکترود مقایسه 38
16-2 پردازش سیگنال EMG39
17-2 کاربردهای سیگنالEMG40
18-2 الکترومایوگرافی سوزنی41
19-2 مزایا و معایب الکترودهای سطحی و سوزنی 43
1-19-2 مزیتهای الکترود سطحی 43
2-19-2 معایب الکترودهای سطحی 43
3-19-2مزایای الکترودهای سوزنی 43
4-19-2 معایب الکترودهای سوزنی 44
20-2 تفاوت موجود بین الکترودهای سطحی وسوزنی 45
21-2 انواع طراحی 45
فصل سوم :مفاهیم اساسی در بدست آوردن سیگنال EMG
1-3 مقدمه 48
2-3 معرفی 48
1-2-3 نمونهبرداری دیجیتال چیست ؟48
2-2-3 فرکانس نمونهبرداری 49
3-2-3 فرکانس نمونهبرداری چقدر باید بالا باشد ؟49
4-2-3 زیر نمونهبرداری – وقتی که فرکانس نمونهبرداری خیلی پائین باشد 52
5-2-3 فرکانس نایکوئیست 53
6-2-3 تبصرهی کاربردی DELSYS54
3-3 سینوسها و تبدیل فوریه 54
1-3-3 تجزیه سیگنالها به سینوسها 55
2-3-3 دامنه فرکانس 57
3-3-3 مستعارسازی – چطور از آن دوری کنیم ؟59
4-3-3 فیلترپارمستعاد 61
5-3-3نکته کاربردی DELSYS63
4-3 فیلترها 64
1-4-3 انواع فیلترهای ایده آل 65
2-4-3 پاسخ فاز ایدهآل 67
3-4-3 فیلتر کاربردی 68
4-4-3پاسخ فاز غیر خطی 71
5-4-3 اندازهگیری ولتاژ - دامنه ، توان ودسی بل 72
6-4-3 فرکانس 3 Db74
7-4-3 مرتبه فیلتر 75
8-4-3 انواع فیلتر 76
9-4-3 فیلترهایdigital - Analog Vs 80
10-4-3 نکته کاربردی Delsys84
5-3 رسیدگی به مبدلهای آنالوگ به دیجیتال 85
1-5-3 کوانتایی سازی 85
2-5-3 رنج دینامیکی 87
3-5-3 کوانتایی سازی سیگنال EMG90
4-5-3 مشخص ک ردن ویژگیهای ADC92
5-5-3 نکته کاربردی Delsys95
6-3 نتیجهگیری 95
فصل 4: بکارگیری مناسبت نیرویgrip مبنی بر سیگنال EMG
1-4 مقدمه 98
2-4دید کلی پایهای یک سیستم 98
3-4 منطقی برای تولید نیروی گریپ 99
4-4 دستاورد 102
5-4 نتیجه 103
فصل پنجم : طبقهبندی سیگنال EMG برای شناسایی سیگنال دست
2-5 سیگنالهای EMG و سیستم اندازهگیری 107
3-5 طرح ویژگی خود سازمان دهی 107
4-5 روش طبقه بندی سیگنال EMG پیشنهادی 109
5-5 نتیجهگیری 117
فصل 6: ارتباط بین نیروی ماهیچهای ایزومتریک و سیگنال EMG به
عنوان هندسه بازو
3-6 بحث 123
1-3-6 ارتباط EMG- Force127
2-3-6 رابط نیروی MF129
3-3-6 رابطهی درصد نیروی DET131
4-3-6 نتایج 131
4-6 روش تجربی 132
1-4-6 اشخاص 132
2-4-6 مجموعه تجربی 132
3-4-6 مدارک EMG و نیرو133
4-4-6 تحلیلهای EMG غیر خطی 135
5-4-6 تحلیلهای آماری و پارامترها 136
5-6 نتیجهگیری 136
فصل 7: طبقهبندی سیگنال EMG برای کنترل دست مصنوعی
1-7 مقدمه 138
2-7 روشها 140
3-7 آزمایش و نتایج141
1-3-7 نتیجهگیری 142
فصل 8 : یک استخوانبندی کنترل شده توسط EMG برای نوسازی دست
1-8 مقدمه 144
2-8 سیستم اصلاح دست 148
1-2-8 استخوانبندی خارجی 148
2-2-8 الکترونیک و نرم افزار 149
3-8 پردازش EMG151
4-8 تستهای اولیه دستگاه 153
1-4-8 نتیجهگیری 155
2-4-8 کارهای آینده 156
فصل نهم : یک مدار آنالوگ جدید بر ای کنترل دست مصنوعی
1-9 مقدمه 158
2-9 چکیدهای از سیستم 160
3-9 پیادهسازی مدار 163
4-9 نتایج شبیه سازی 166
5-9 نتیجهگیری 168
نتیجهگیری کلی 169
فهرست تصاویر
فصل 1
شکل 1 : نمونهای از سیگنالEMG 7
شکل 2: واحد حرکتی 8
شکل 3: مدل آناتومی عضله 9
شکل 4: اکتین و میوزین و باندهای مربوط به آن 11
شکل 5: پروسه انقباض عضله 12
شکل 6: شماتیک تصویری سیکل دپلاریزاسیون / پلاریزاسیون درون
غشاهای تحریک شونده 13
شکل 7: نمودار پتانسیل عمل 13
شکل 8: ناحیهی دپلاریزاسیون در غشاء فیبرعضلانی 14
شکل 9: پتانسیل عمل واحدهای حرکتی متعدد 14
شکل 10: بکارگیری و فرکانس شروع واحدهای حرکتی نیرو15
شکل 11: ثبت سیگنال خام سه انقباض برای عضله سه سر 16
شکل 12: سیگنال خام EMG با تداخل سنگین ECG19
فصل 2
شکل 1 :طیف فرکانسی سیگنال EMG آشکار شده جلوی ماهیچه 23
شکل 2: طرحهای شکل تقویت کننده تفاضلی 28
شکل 3: ارائه طرح کلی بارو ترکیبات مدور بر الکترود 34
شکل 4: مکان مرجع الکترود بین تاندون و بخش حرکتی 35
فصل3
شکل 1: سیگنال آنالوگ کشف شده توسط الکترود DE2.149
شکل 2: A) نمونهبرداری از سینوس 1 ولت ، 1 هرتز در 10 هرتز 51
B) بازآفرینی سینوس نمونهبرداری شده در 10 هرتز 51
شکل 3: A) نمونهبرداری یک سینوس 1 ولت ، 1 هرتز در 2 هرتز 52
B) بازآفرینی سینوس نمونه برداریشده در 2 هرتز 52
شکل 4: A) نمونهبرداری یک سینوس 53
شکل 5: تجزیهی فوریهی یک پتانسیل عمل واحد حرکتی نمونهبرداری شده 56
شکل 6 : هیستوگرام دامنه 10 سینوس شکل 5 58
شکل7: طیف موج فرکانسی سیگنال نمونه در شکل 660
شکل 8 : مستعار سازی نویز 13 61
شکل 9 : پاد مستعارسازی 62
شکل 10: انواع فیلترها 66
شکل 11: طرح فاز یک فیلترایده آل 68
شکل 12: خصوصیات فیلترهای کاربردی 72
جدول 1: فاکتورهای تضعیف وگین نمونه 74
شکل 13: فیلتر پائین گذر مرتبه اول و دوم 76
شکل 14: اندازه ومقایسه انواع فیلترهای بالاگذر 79
شکل 15: فیلتر پائین گذر تک قطبی 82
شکل 16: نمونهبرداری و فیلتر دیجیتالی سیگنال آنالوگ83
شکل 17: مراحل کوانتایی سازی مبدل آنالوگ به دیجیتال 86
شکل 18: تحلیل رنج A/D 89
فصل 4
شکل 1: بلوک دیاگرام دستگاه 99
شکل 2: سطوح و شماتیکها 100
شکل 3: نیروهای گریپ 102
فصل 5
شکل 1: بلوک دیاگرام سیستم اندازهگیری سیگنال EMG110
شکل 2 : موقعیت الکترودها110
شکل 3: بلوک دیاگرام روش های پیشنهادی 111
شکل 4: سیگنالهای دست برای کاراکترهای کره ای 112
شکل 5: نرونهای خروجی 113
شکل 6: بلوک دیاگرام ترتیب آزمایشگاهی 114
شکل 7: عکس وضعیت آزمایش 114
شکل 8: سیگنال EMG اندازهگیری شده و سیگنال داخلی قابل استفاده 115
شکل 9: نرونهای خروجی sofm1 بعد از مرتب کردن 115
جدول 1: نرونهای خروجی بعد از یادگیری 116
جدول 2: نتایج آزمایش 116
فصل 6
شکل 1 : مقادیر میانگین نیروهای ارادی ماکزیمم در ANT و POST123
شکل 2 : رابطهی نیروی EMG124
شکل 3: رابطهی نیروی MF125
شکل 4: رابطهی درصد نیروی DET126
شکل 5: دیاگرامهای ارتباط بین فرکانس متوسط و DET127
فصل 8
شکل 1: طرح هندسی سیستم توانبخشی دست 146
شکل 2: نمای سیستم توانبخشی دست 147
شکل 3: نمای جانبی استخوانبندی بیرونی 148
شکل 4: دستمجازی وواسط درمان 150
شکل 5: محل قرارگیری الکترود سطحی 151
شکل 6: سیگنال EMG یکسو شده 152
فصل 9
شکل 1: بلوک دیاگرام سیستم پیشنهادی 160
شکل 2: دیاگرام حالت کنترل حالات مختلف دست با استفاده از EMG161
جدول 1: حالات دست وسیگنالهای مربوطه 161
شکل 3: بلوک دیاگرام پردازش سیگنال 162
شکل 4: بلوک دیاگرام تحلیل گر EMG163
شکل 5: شماتیک مدار پردازش سیگنال 164
جدول 2: اندازهی تراتریستورها 165
شکل 6: سیگنالهای داخلی شبیهسازی شدهی تحلیلگر سیگنال EMG166
شکل 7: مجموعهی سیگنالهای EMG وپاسخ خروجی ماشین حالت 167
شکل 8: پاسخهای شبیهسازی شده برای تغییرات انگشتان مختلف167
نتیجهگیری :
بدلیل بحث بسیار گستردهی EMG ابتدا سعی کردیم دید اولیهای نسبت به EMG پیدا کرده وسپس به شرع یکی از کاربردهای آن بپردازیم . در بررسی کلی EMG دریافتیم که الکترومایوگرافی کاربرد گستردهای در تشخیص و درمانهای حرکتی و عصبی و هم چنین برای نوسازی و اصلاح اعضای قطع شدهی بدن سالم دارد با بررسیهایی که داشتیم دیدیم که الکترومایوگرافی مثل اغلب روشهای درمانی دیگر دارای انواعی است که به توضیح آنها معایب و مزایا نحوه ی کاربرد و موارد استفاده پرداختیم . ودر آن فصل به این نتیجه رسیدیم که برای هر ماهیچه و عضله بسته به اندازهی آن ماهیچه و نوع مشکلی که دارد الکترود مورد نیاز را باید استفاده کرد برای بدست آوردن سیگنال دانستن یک سری مفاهیم اساسی لازم و ضروری است که به شرح آنها پرداختیم که کمک به سزایی در بدست آوردن سیگنال میکند مثلاً اینکه برای سیگنال نویزنداشته باشد باید از چه فیلتری استفاده شود . زمانی که مفهوم و روشهای کلی بدست آوردن سیگنال را آموخته باشیم میتوانیم بحث خود را از حالت کلی به بررسی حالات جزئی تر ببریم که ما در این تحقیق سعی کردیم روی حرکت دست و کاربرد EMG در آن کار کنیم . برای شروع اینکار ابتدا از طبقهبندی سیگنال EMG برای شناسایی سیگنالهای دست استفاده کردیم . چون برای اولین بار به هم چنین کاری میپرداختیم روش سادهای به نام SOFM را انتخاب کردیم که یک روش بدون کنترل میباشد .
وقتی سیگنالهای شناسایی شده دست را داشته باشیم خیلی راحت میتوانیم به درمان مشکلات آن بپردازیم و هم چنین با مشکلات زیادی روبرو بود و ریسک بالایی را از صدمات جسمی را دارا بود ولی با ظهور الکترومایوگرافی و به کارگیری صحیح آن رفته رفته این مشکلات کاهش یافت و با یک استخوانبندی خارجی کنترل شده با EMG به راحتی میتوان به نوسازی دست کمک کرد بدون اینکه صدمهی جسمی به شخص وارد شود . سیستمی که برای اصلاح دست پیاده سازی کردیم شامل یک PC، یک میکروکنترلر ، یک استخوان بندی خارجی و یک قطعه جهت ثبت سیگنالهای EMG است .
با این کار هزینه های درمان نیز بسیار کاهش مییابد . هم چنین در چنین تحقیقات خود به مداری آنالوگ دست پیدا کردیم که برای کنترل دستهای مصنوعی طراحی شده است . به این دلیل از مدار آنالوگ استفاده میشود که سیگنالها در ناحیهی آنالوگ واقع گرایانهتر از ناحیهی دیجیتال است .
همانطور که گفته شد بررسی الکترومایوگرافی در حرکت دست بحث بسیار گستردهای است که در اینجا ما تنها به بررسی مطالب کلی پرداختیم .