سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پایان نامه سیستم های تشخیص وسایل نقلیه رشته نرم افزار کامپیوتر

اختصاصی از سورنا فایل پایان نامه سیستم های تشخیص وسایل نقلیه رشته نرم افزار کامپیوتر دانلود با لینک مستقیم و پر سرعت .

پایان نامه سیستم های تشخیص وسایل نقلیه رشته نرم افزار کامپیوتر


پایان نامه سیستم های تشخیص وسایل نقلیه رشته نرم افزار کامپیوتر

دانلود متن کامل پایان نامه مقطع کارشناسی با فرمت ورد word

 

پایان نامه دوره کارشناسی کامپیوتر گرایش نرم افزار

 موضوع:

سیستم های تشخیص وسایل نقلیه

 استاد راهنما:

مهندس باقر ازقندی

 نام دانشجو:

مهدیه خیاط

چکیده

سیستم های تشخیص وسایل نقلیه

در سال های اخیر نظارت بر ترافیک و ایمنی وسایل نقلیه اعم از خودروها ، قطارها ، کامیون ها ، …. مورد توجه کمیته های حمل و نقل هوشمند قرار گرفته است .جهت بررسی سیستم های که ما را به اهداف فوق برساند ، نیاز به تشخیص وسیله ی نقلیه است تا بتوان پردازش ها و اقدامات لازم را به عمل آورد . لذا طبق تحقیقات به عمل آمده ، تجهیزات و روش های مختلفی ما را در این مقوله یاری می کنند و عبارتند از :

1-پردازش تصاویر بدست آمده توسط دوربین های تامین شده بدین منظور

2- سیستم های ویدئویی نصب شده بر سکو های هوایی

3- بررسی تصاویر جاده ای مبتنی برپارامترهای سه بعدی

4- سیستم های مبتنی بر مشخصه های محلی وسیله ی نقلیه در یک تصویر  

5- بکار گیری الگوریتم مبتنی بر استخراج ویژگی از طریق تغییر شکل های خاص

6- بکارگیری مدل سه بعدی توسعه داده شده بر پایه ی عناصر لبه ی وسیله نقلیه

7- سیستم های مبتنی بر یادگیری با ناظر (شامل یک سیستم کک راننده و یک سیستم وسیله نقلیه خود گردان)

8- تشخیص مبتنی بر تشخیص سیگنالهای ویژه ی ارسالی

از طریق روش های فوق ، به کمک یک بانک اطلاعاتی شامل چندین وسیله نقلیه نمونه که از تصاویر واقعی جاده استخراج شده اند ، آزمایشات ویژه و متنوعی بر روی وسایل نقلیه انجام می شود و کارایی هر روش جهت تشخیص صحیح در کوتاه ترین زمان ممکن ثبت می شود و مورد استفاده های بعدی قرار خواهد گرفت .

مقدمه

   هدف اصلی از تشخیص وسایل نقلیه این است که تعداد وسایل نقلیه ی مشاهده شده در هر نقطه جهت تخمین و پیش بینی جریان خودرو ها را در یک بازه ی ترافیکی، اندازه گیری نمائیم. بدین وسیله می توانیم امنیت و بهره وری ترافیک را بهبود بخشیم. سیستم های متنوعی که هر کدام کارایی ویژه ای دارند ، رسیدن به اهداف فوق را آسان گردانیده اند .

یکی از این سیستم ها، سیستم تشخیص وسایل نقلیه ی جاده ای در تصاویر دوربینی با نرخ فریمی پایین

می باشد. اجزای پایه ای وسایل نقلیه از تصاویر استخراج می شود و سپس توسط دسته کننده های برداری با نام «اس وی ام» با یکدیگر ترکیب می شوند. این قبیل سیستم ها ، مشکل اصلی تشخیص وسایل نقلیه را در تصاویر ایستا بر طرف نموده اند ، به علاوه از تکنیک های مبتنی بر نمونه های جمع آوری شده استفاده می کنند.

گاهی اوقات اجزایی از وسایل نقلیه در تصاویر قابل دسترسی نیستند و با موانعی مسدود شده اند. با کمک یک الگوریتم تشخیص وسایل نقلیه مبتنی بر مشخصات محلی روی تصاویر بدست آمده از طریق مادون قرمز، این مشکل حل می شوند .

سیستم های ویدئویی نصب شده بر روی سکوهای هوایی بر اساس انعطاف پذیری و تغییر پذیری آنها معرفی می شوند و توانایی دارند نواحی وسیعی را جهت تشخیص از روی تراکم زمانی و فضایی داده ی نمونه پوشش دهند. الگوریتمی بدین منظور طراحی شده است که از تصاویر سه جزئی استفاده می کند و پس از تشخیص وسیله ی نقلیه در اولین تصویر، آن را در دو تصویر بعدی تطبیق می دهد و دید گسترده ای را فراهم می آورد .

همچنین در راستای عملیات ردیابی و مکان یابی وسایل نقلیه ، نیاز به تشخیص آن ها داریم. هدف این است که یک شی (وسیله ی نقلیه ) با یافتن پارامترهای سه بعدی از موانع مشاهده شده در تصاویر جاده ای تشخیص داده شود. نمونه ای دیگر از این قبیل سیستم ها ، سیستم های مبتنی بر یادگیری با ناظر است که از طریق یک سیستم کمک راننده ویک سیستم وسیله نقلیه خودگردان، توسعه یافته است و در این سیستم تابعی برای تشخیص محیط جاده و وسایل نقلیه وجود دارد و تعداد کمی از تصاویر وسایل نقلیه در حال حرکت را به کار می گیرد.

سیستم های دیگری وجود دارند که از طریق الگوریتم مبتنی بر نمونه های ساختاری که از تکنیک های استخراجی و بدست آمده از مشخصات ویژه ی تصویر وسیله ی نقلیه عمل می کند، استخراج ویژگی می نماید. این ویژگی ها توسط تغییر شکل های فوریه ای، تغییرموج ضربه ای و تغییر شکل منحنی ضربه ای به دست    می آید. عملیات روی یک مجموعه داده انجام می شود .

تشخیص وسایل نقلیه از طریق تکنیک هایی که مبتنی بر مدل های ایجاد شده از اشیاء سه بعدی است ، نیز امکان پذیر می باشد و بوسیله ی نقاط ، خطوط و سطوح ویژه ی وسیله نقلیه و مدلسازی آنها با ساختارهای مکان نگر عمل می کند .

آخرین نوع سیستم های بررسی شده ، سیستم هایی هستند که با کمک یک ناظر و تعدادی شرکت کننده ، از طریق یکسری آزمایشات ، در یک محیط شبیه سازی شده از جاده و از طریق سیگنال های ارسالی عملیات تشخیص را انجام می دهند.

فصل یکم- تشخیص وسایل نقلیه ی جاده ای در تصاویر دوربینی

 می خواهیم یک سیستم تشخیص وسایل نقلیه را مبتنی بر بینایی دوربین در قالب تکنولوژی سیستم های حمل و نقل هوشمند (آی تی اس) بررسی کنیم . برای رسیدن به این هدف، از یک دوربین واحد به عنوان ورودی استفاده می شود . یک دستگاه تصویربرداری مونوکیولار، یک دوربین دیجیتال بی سیم است که برای اندازه گیری دامنه های غیرمستقیم با استفاده از قوانین بینایی فراهم شده است .

تشخیص یک وسیله ی نقلیه در تصاویر دوربینی ، مشکل تشخیص شی در تصاویر ایستا را حل می کند . همچنین تشخیص خودرو باید بطور قوی در شرایط روشنایی متغیر ، موقعیت های متغیر و در شرایطی که برخی اجزای وسیله نقلیه تغییر کند یا در تصویر دیده نشود، اجرا شود .

تکنیک های تشخیص اشیا (وسایل نقلیه و …) را می توان در سه دسته طبقه بندی کرد که در ادامه شرح داده می شود . اولین دسته بوسیله سیستم های مبتنی بر مدل نشان داده می شود . این مدل اشیاء موردنظر را مشخص می کند و سپس سیستم برای تطبیق دادن مدل در قسمتهای مختلف تصویر برای پیدا کردن یک حالت مناسب تلاش می کند . متاسفانه ، وسایل نقلیه ی جاده ای به طور کلی در سطحی متغیر مطرح می شود و تعیین یک مدل در مسیر یک راه را غیر ممکن می سازد . در نتیجه سیستم های مبتنی بر این مدل جهت تشخیص وسایل نقلیه کمتر استفاده می شوند. دسته ی دومی روشهای تغییر ناپذیر تصویری هستند که تطبیقی مبتنی بر خصوصیات الگوی یک مجموعه تصویر انجام می دهد و به طور مزمنی شی ای که مورد جستجو قرار گرفته را تعیین می کند . وسایل نقلیه ی جاده ای ، هر الگوی وابسته به تصویر قطعی را (انواع مختلف از مدلهای وسایل نقلیه وابسته به سازنده) به دلیل تغییرپذیری بالای آن نشان نمی دهد . به همین دلیل روشهای تغییرناپذیر تصویری یک انتخاب مناسب جهت رفع مشکل تشخیص وسایل نقلیه نیست .

دسته ی سوم از تکنیکهای تشخیص شئ بوسیله الگوریتم یادگیری مبتنی بر نمونه مشخص شده اند . خصوصیات واضح از یک نوع شی توسط سیستم مبتنی بر مجموعه ای از نمونه ها یادگرفته می شود . این نوع تکنیک می تواند راه حلی را برای رفع مشکل تشخیص و ردیابی وسایل نقلیه به شرط آنکه شرایط معرفی شده پیروی شود ، فراهم کند . تعداد زیادی ازوسایل نقلیه در بانک اطلاعاتی وجود دارد . ا ین نمونه ها نمایشگر انواع وسایل نقلیه در شرایط متغیری از روشنایی وموقعیت وسایز آن در تصویر است .

تکنیک های مبتنی بر نمونه ، در طبیعت ، در محیط های متفاوت برای تشخیص عابر استفاده می شده است. به طور کلی این تکنیک ها جهت تشخیص اشیایی که قسمت های قابل تشخیص متمایزی دارند و در یک موقعیت به خوبی تعریف شده اند ، به کار برده می شود . این حالات برای وسایل نقلیه ی جاده ای ، هنگامی که یک دیدگاه ، یادگیری توزیع شده بر مبتنی بر اجزای اشیا دارد ، برای تشخیص اشیا در محیط های متفاوت و حقیقی کارآمد تر است نسبت به حالاتی که از یک دیدگاه کلی نگر استفاده می کند .

تکنیک های یادگیری توزیع شده با قسمت هایی از تصویر که قابل دسترس نیستند می تواند جهت تشخیص به کار روند و نسبت به چرخش های شی در تصویر کمتر حساس هستند .

برای تشخیص کاراتر در تشخیص اشیا در تصاویر حقیقی ، فضای جستجوی وسایل نقلیه را در یک وضعیت هوشمند بر پایه ی تصاویر جاده ای ، کاهش می دهیم . در نتیجه با خطوط علامت گذاری شده ی جاده ، کار پردازش برای تشخیص وسیله نقلیه آسانتر می شود . نواحی احاطه شده توسط محدودیت هایی از خطوط ، با انتخاب نواحی مورد نظر ، بررسی می شود .این نواحی ، شامل وسایل نقلیه ی مورد نظر هستند که به عنوان مدل تشخیص و ردیابی وسیله نقلیه به کار می رود .

 1-1- نواحی کاندید شده مورد نظر

سیستم به دو بخش زیر سیستم تقسیم می شود . اولین زیر سیستم مسئول تشخیص و ردیابی خط هاست ، همچنین خط تقاطع بوسیله اولین زیر سیستم طبق خطوط جاده ای ، مورد نظارت قرار گرفته است .

 1-1-1- تشخیص و ردیابی خط

تصاویر به دست آمده از دوربین پردازش شده است و خطوط منحنی که تصویر را پوشش داده اند برای تشخیص خطوط علامت گذاری شده به منظور بدست آوردن تخمینی از خطوط جاده ای که ناحیه ی مورد جستجو را تعیین می کند مناسب هستند .

الگوریتم حدود 50 خط در ناحیه ی مورد جستجورا در فاصله ی 2 متری از دوربین در جهت خط افقی ، بررسی می کند . همچنین با توسعه الگوریتم ، می توان اجزای یک فضای غیر یکنواخت را جستجو کرد .

بردار در حالت نهایی برای هر خط روی جاده شامل 6 متغیر است .

Coh , clh , cov , clv , x0 , q0

که coh و clh پارامترهای انحنایی سطح افق را نمایش می دهد . cov و clv کاندیدی برای پوشش پارمترهای انحنایی عمودی اند و x0 و q0 به ترتیب خطای جانبی و خطای جهت یابی وسیله نقلیه می باشد .

 

 متن کامل را می توانید دانلود نمائید چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)

ولی در فایل دانلودی متن کامل پایان نامه

همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود است

 


دانلود با لینک مستقیم


پایان نامه سیستم های تشخیص وسایل نقلیه رشته نرم افزار کامپیوتر

دانلود مقاله آشنایی با وسایل اندازه گیری

اختصاصی از سورنا فایل دانلود مقاله آشنایی با وسایل اندازه گیری دانلود با لینک مستقیم و پر سرعت .

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  9  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید

 

 

 

مقدمه
فیزیک را علم اندازه گیری نیز می نامند. وسایلی که در فیزیک برای اندازه گیری بکار می روند بسیار متنوع اند ، اما وسایلی که در آزمایشگاه مقدماتی بکار می روند نسبتا ساده و تعداد آنها محدود است. نوع وسیله ای که برای یک اندازه گیری خاص انتخاب می شود ، بستگی به اندازه آن کمیت و دقت لازم برای اندازه گیری آن دارد . در شروع کار آزمایشگاهی ، قبل از هر چیز باید با وسایل اندازه گیری به ویژه اندازه گیری طول که مبنای اغلب سنجشهاست آشنا شد. در ادامه به معرفی کولیس ، ریز سنج ، گوی سنج می پردازیم .
کولیس
تاریخچه کولیس1
در سال ۱۹۴۹ فردی به نام میتوتویو اولین پروانه ساخت کولیس را کسب کرد و تولید آن را در همان سال در کارخانه میزونوکوچی (Mizonokuchi) در شهر کاوازاکی ژاپن شروع کرد. در سال ۱۹۵۳ کارخانه آن به اوتسونومیا (utsonomiya) انتقال یافته و تولید انبوه آن شروع شد.در سال ۱۹۵۶ این فرد اولین کسی بود که موضوع استفاده از فولاد ضد زنگ را برای ساخت کولیس مطرح کرد. ۷ سال بعد در سال ۱۹۶۳ میتوتویو بیش از یک میلیون کولیس تولید کرد. در همان سال تولید کولیس ساعتی آغاز شد و به دنبال آن کولیس‌های دیجیتالی و سپس کولیسهای ضد زنگ که در مقابل آب و روغن مقاوم بودند تولید شد. کولیس‌های کار سنگین که طول ۴۵۰ میلیمتر و بیشتر را اندازه‌گیری می‌کنند از سال ۱۹۶۱ ساخته شدند. امروزه کولیس‌هایی که طول ۲۰۰۰ میلیمتر را اندازه‌ می‌گیرند نیز تولید می‌شود. بدنه این نوع از کولیس‌ها از فیبرهای کربنی است تا سبک باشند و معضل بزرگ این کولیس‌ها که سنگینی آنها است را بدین‌گونه رفع کرده‌اند.

 

 

 

اجزای کولیس

 


G تیغه نهایی D شاخک خارجی
R خط کش C شاخک خارجی
W زایده زیر ورنیه E شاخک داخلی
L پیچ تثبیت F شاخک داخلی

 

 

 

 

 

 

 


روش کار کولیس2
قطر داخلی و خارجی یک لوله را نمی‌توان با دقت و به آسانی با یک خط کش مدرج اندازه گرفت. برای اندازه گیری دقیق‌تر آنها از کولیس استفاده می‌شود. کولیس از ترکیب یک خط کش مدرج و یک ورنیه متحرک درست شده است. خط کش ورنیه دارای دو شاخک است شاخک‌های کوچک برای اندازه گیری قطر داخل و شاخک‌های بزرگ برای اندازه گیری قطر خارجی اجسام بکار می‌رود. خط کش برحسب میلیمتر مدرج شده ورنیه دارای درجه بندی کوچکی است که اغلب شامل 10 قسمت بوده و معادل 9 میلیمتر است یعنی 9 میلیمتر در روی خط کش کوچک‌تر است. با این نوع کولیس به آسانی می‌توانیم تا 1.10 میلیمتر را اندازه بگیریم. دقت اندازه گیری کولیس از تقسیم کردن یک درجه خط کش به تعداد تقسیمات ورنیه به دست می‌آید.برخی از انواع کولیسها برای اندازه گیری عمق یک تیغه باریک دارند که به ورنیه متصل است و با آن حرکت می‌کند. اگر صفر ورنیه بر صفر خط کش منطبق باشد انتهای تیغه بر انتهای خط کش منطبق می‌گردد در صنعت برای اندازه گیری قطر گلوله و سیلندر و پیستون و طول وسایل مختلف از انواع کولیس‌ها با بزرگی‌های مختلف استفاده می‌شود.
اندازه گیری قطر یا طول
جسمی را که منظور تعیین طول با قطر خارجی آن است در بین شاخک‌های ثابت و متحرک بزرگ قرار می‌دهند بطوری که هر دو شاخک با بدنه جسم تماس داشته باشند سپس به کمک ورنیه و خط کش اندازه طول یا قطر گلوله را تعیین می‌کنند. درجات را از روی خط کش (عددی که صفر ورنیه در مقابل آن قرار دارد و یا از آن گذشته است) و کسر درجات را از روی ورنیه می‌خوانند برای کسر درجات از درجات ورنیه را پیدا می‌کنند که درست در برابر یکی از درجات خط کش قرار گرفته است.
اندازه گیری قطر داخلی
برای اندازه گیری قطر داخلی مثلا قطر یک لوله دو شاخک بالایی را در داخل لوله فرو می‌برند و ورنیه را برای خط کش آنقدر جابجا می‌کنند تا دو شاخک با جدار داخلی لوله تماس پیدا کنند. کولیس تا حدی در داخل لوله می‌چرخانند تا دو شاخک بر قطر لوله منطبق گردد. در این حالت قطر داخلی را با روش قبلی از روی خط کش و ورنیه می‌خوانند.

ریز سنج 3

 

ضخامت ورقه‌های نازک و سیم‌های نازک را با اسبابی به نام ریز سنج اندازه می‌گیرند این اسباب از ترکیب یک پچ و یک مهره مدرج ساخته شده است. در این وسیله ، مهره استوانه‌ای است تو خالی که سطح خارجی آن مدرج شده است. این استوانه به کمانی متصل است در انتهای دیگر کمان زایده‌ای وجود دارد که به آن سندان می‌گویند. پیچ در داخل کلاهکی قرار دارد و در داخل مهره حرکت می‌کند، کلاهک پیچ بر روی سطح خارجی مهره جابجا می‌شود. در صورتی که پای پیچ 0.5 میلیمتر باشد دور کلاهک پیچ به پنجاه قسمت و اگر پای پیچ یک میلیمتر باشد دور کلاهک پیچ به صد قسمت تقسیم می‌شود به آن قسمت از پیچ که از داخل مهره خارج شده و در داخل کمان جابه جا می‌گردد زباله می‌گویند.اگر پیچ یک دور بپیچد در نوع اول زباله ریزسنج نیم میلیمتر جابجا می‌شود بنابراین وقتی پیچ به‌اندازه یک درجه بپیچد دهانه ریزسنج به ‌اندازه یک صدم میلیمتر باز یا بسته می‌شود. بنابراین با استفاده از ریزسنج دقت‌اندازه گیری تا میلیمتر بالا می‌رود.

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  9  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله آشنایی با وسایل اندازه گیری

پایان نامه سیستم های تشخیص وسایل نقلیه رشته نرم افزار کامپیوتر

اختصاصی از سورنا فایل پایان نامه سیستم های تشخیص وسایل نقلیه رشته نرم افزار کامپیوتر دانلود با لینک مستقیم و پر سرعت .

پایان نامه سیستم های تشخیص وسایل نقلیه رشته نرم افزار کامپیوتر


پایان نامه سیستم های تشخیص وسایل نقلیه رشته نرم افزار کامپیوتر

دانلود متن کامل پایان نامه مقطع کارشناسی با فرمت ورد word

 

پایان نامه دوره کارشناسی کامپیوتر گرایش نرم افزار

 موضوع:

سیستم های تشخیص وسایل نقلیه

 استاد راهنما:

مهندس باقر ازقندی

 نام دانشجو:

مهدیه خیاط

چکیده

سیستم های تشخیص وسایل نقلیه

در سال های اخیر نظارت بر ترافیک و ایمنی وسایل نقلیه اعم از خودروها ، قطارها ، کامیون ها ، …. مورد توجه کمیته های حمل و نقل هوشمند قرار گرفته است .جهت بررسی سیستم های که ما را به اهداف فوق برساند ، نیاز به تشخیص وسیله ی نقلیه است تا بتوان پردازش ها و اقدامات لازم را به عمل آورد . لذا طبق تحقیقات به عمل آمده ، تجهیزات و روش های مختلفی ما را در این مقوله یاری می کنند و عبارتند از :

1-پردازش تصاویر بدست آمده توسط دوربین های تامین شده بدین منظور

2- سیستم های ویدئویی نصب شده بر سکو های هوایی

3- بررسی تصاویر جاده ای مبتنی برپارامترهای سه بعدی

4- سیستم های مبتنی بر مشخصه های محلی وسیله ی نقلیه در یک تصویر  

5- بکار گیری الگوریتم مبتنی بر استخراج ویژگی از طریق تغییر شکل های خاص

6- بکارگیری مدل سه بعدی توسعه داده شده بر پایه ی عناصر لبه ی وسیله نقلیه

7- سیستم های مبتنی بر یادگیری با ناظر (شامل یک سیستم کک راننده و یک سیستم وسیله نقلیه خود گردان)

8- تشخیص مبتنی بر تشخیص سیگنالهای ویژه ی ارسالی

از طریق روش های فوق ، به کمک یک بانک اطلاعاتی شامل چندین وسیله نقلیه نمونه که از تصاویر واقعی جاده استخراج شده اند ، آزمایشات ویژه و متنوعی بر روی وسایل نقلیه انجام می شود و کارایی هر روش جهت تشخیص صحیح در کوتاه ترین زمان ممکن ثبت می شود و مورد استفاده های بعدی قرار خواهد گرفت .

مقدمه

   هدف اصلی از تشخیص وسایل نقلیه این است که تعداد وسایل نقلیه ی مشاهده شده در هر نقطه جهت تخمین و پیش بینی جریان خودرو ها را در یک بازه ی ترافیکی، اندازه گیری نمائیم. بدین وسیله می توانیم امنیت و بهره وری ترافیک را بهبود بخشیم. سیستم های متنوعی که هر کدام کارایی ویژه ای دارند ، رسیدن به اهداف فوق را آسان گردانیده اند .

یکی از این سیستم ها، سیستم تشخیص وسایل نقلیه ی جاده ای در تصاویر دوربینی با نرخ فریمی پایین

می باشد. اجزای پایه ای وسایل نقلیه از تصاویر استخراج می شود و سپس توسط دسته کننده های برداری با نام «اس وی ام» با یکدیگر ترکیب می شوند. این قبیل سیستم ها ، مشکل اصلی تشخیص وسایل نقلیه را در تصاویر ایستا بر طرف نموده اند ، به علاوه از تکنیک های مبتنی بر نمونه های جمع آوری شده استفاده می کنند.

گاهی اوقات اجزایی از وسایل نقلیه در تصاویر قابل دسترسی نیستند و با موانعی مسدود شده اند. با کمک یک الگوریتم تشخیص وسایل نقلیه مبتنی بر مشخصات محلی روی تصاویر بدست آمده از طریق مادون قرمز، این مشکل حل می شوند .

سیستم های ویدئویی نصب شده بر روی سکوهای هوایی بر اساس انعطاف پذیری و تغییر پذیری آنها معرفی می شوند و توانایی دارند نواحی وسیعی را جهت تشخیص از روی تراکم زمانی و فضایی داده ی نمونه پوشش دهند. الگوریتمی بدین منظور طراحی شده است که از تصاویر سه جزئی استفاده می کند و پس از تشخیص وسیله ی نقلیه در اولین تصویر، آن را در دو تصویر بعدی تطبیق می دهد و دید گسترده ای را فراهم می آورد .

همچنین در راستای عملیات ردیابی و مکان یابی وسایل نقلیه ، نیاز به تشخیص آن ها داریم. هدف این است که یک شی (وسیله ی نقلیه ) با یافتن پارامترهای سه بعدی از موانع مشاهده شده در تصاویر جاده ای تشخیص داده شود. نمونه ای دیگر از این قبیل سیستم ها ، سیستم های مبتنی بر یادگیری با ناظر است که از طریق یک سیستم کمک راننده ویک سیستم وسیله نقلیه خودگردان، توسعه یافته است و در این سیستم تابعی برای تشخیص محیط جاده و وسایل نقلیه وجود دارد و تعداد کمی از تصاویر وسایل نقلیه در حال حرکت را به کار می گیرد.

سیستم های دیگری وجود دارند که از طریق الگوریتم مبتنی بر نمونه های ساختاری که از تکنیک های استخراجی و بدست آمده از مشخصات ویژه ی تصویر وسیله ی نقلیه عمل می کند، استخراج ویژگی می نماید. این ویژگی ها توسط تغییر شکل های فوریه ای، تغییرموج ضربه ای و تغییر شکل منحنی ضربه ای به دست    می آید. عملیات روی یک مجموعه داده انجام می شود .

تشخیص وسایل نقلیه از طریق تکنیک هایی که مبتنی بر مدل های ایجاد شده از اشیاء سه بعدی است ، نیز امکان پذیر می باشد و بوسیله ی نقاط ، خطوط و سطوح ویژه ی وسیله نقلیه و مدلسازی آنها با ساختارهای مکان نگر عمل می کند .

آخرین نوع سیستم های بررسی شده ، سیستم هایی هستند که با کمک یک ناظر و تعدادی شرکت کننده ، از طریق یکسری آزمایشات ، در یک محیط شبیه سازی شده از جاده و از طریق سیگنال های ارسالی عملیات تشخیص را انجام می دهند.

فصل یکم- تشخیص وسایل نقلیه ی جاده ای در تصاویر دوربینی

 می خواهیم یک سیستم تشخیص وسایل نقلیه را مبتنی بر بینایی دوربین در قالب تکنولوژی سیستم های حمل و نقل هوشمند (آی تی اس) بررسی کنیم . برای رسیدن به این هدف، از یک دوربین واحد به عنوان ورودی استفاده می شود . یک دستگاه تصویربرداری مونوکیولار، یک دوربین دیجیتال بی سیم است که برای اندازه گیری دامنه های غیرمستقیم با استفاده از قوانین بینایی فراهم شده است .

تشخیص یک وسیله ی نقلیه در تصاویر دوربینی ، مشکل تشخیص شی در تصاویر ایستا را حل می کند . همچنین تشخیص خودرو باید بطور قوی در شرایط روشنایی متغیر ، موقعیت های متغیر و در شرایطی که برخی اجزای وسیله نقلیه تغییر کند یا در تصویر دیده نشود، اجرا شود .

تکنیک های تشخیص اشیا (وسایل نقلیه و …) را می توان در سه دسته طبقه بندی کرد که در ادامه شرح داده می شود . اولین دسته بوسیله سیستم های مبتنی بر مدل نشان داده می شود . این مدل اشیاء موردنظر را مشخص می کند و سپس سیستم برای تطبیق دادن مدل در قسمتهای مختلف تصویر برای پیدا کردن یک حالت مناسب تلاش می کند . متاسفانه ، وسایل نقلیه ی جاده ای به طور کلی در سطحی متغیر مطرح می شود و تعیین یک مدل در مسیر یک راه را غیر ممکن می سازد . در نتیجه سیستم های مبتنی بر این مدل جهت تشخیص وسایل نقلیه کمتر استفاده می شوند. دسته ی دومی روشهای تغییر ناپذیر تصویری هستند که تطبیقی مبتنی بر خصوصیات الگوی یک مجموعه تصویر انجام می دهد و به طور مزمنی شی ای که مورد جستجو قرار گرفته را تعیین می کند . وسایل نقلیه ی جاده ای ، هر الگوی وابسته به تصویر قطعی را (انواع مختلف از مدلهای وسایل نقلیه وابسته به سازنده) به دلیل تغییرپذیری بالای آن نشان نمی دهد . به همین دلیل روشهای تغییرناپذیر تصویری یک انتخاب مناسب جهت رفع مشکل تشخیص وسایل نقلیه نیست .

دسته ی سوم از تکنیکهای تشخیص شئ بوسیله الگوریتم یادگیری مبتنی بر نمونه مشخص شده اند . خصوصیات واضح از یک نوع شی توسط سیستم مبتنی بر مجموعه ای از نمونه ها یادگرفته می شود . این نوع تکنیک می تواند راه حلی را برای رفع مشکل تشخیص و ردیابی وسایل نقلیه به شرط آنکه شرایط معرفی شده پیروی شود ، فراهم کند . تعداد زیادی ازوسایل نقلیه در بانک اطلاعاتی وجود دارد . ا ین نمونه ها نمایشگر انواع وسایل نقلیه در شرایط متغیری از روشنایی وموقعیت وسایز آن در تصویر است .

تکنیک های مبتنی بر نمونه ، در طبیعت ، در محیط های متفاوت برای تشخیص عابر استفاده می شده است. به طور کلی این تکنیک ها جهت تشخیص اشیایی که قسمت های قابل تشخیص متمایزی دارند و در یک موقعیت به خوبی تعریف شده اند ، به کار برده می شود . این حالات برای وسایل نقلیه ی جاده ای ، هنگامی که یک دیدگاه ، یادگیری توزیع شده بر مبتنی بر اجزای اشیا دارد ، برای تشخیص اشیا در محیط های متفاوت و حقیقی کارآمد تر است نسبت به حالاتی که از یک دیدگاه کلی نگر استفاده می کند .

تکنیک های یادگیری توزیع شده با قسمت هایی از تصویر که قابل دسترس نیستند می تواند جهت تشخیص به کار روند و نسبت به چرخش های شی در تصویر کمتر حساس هستند .

برای تشخیص کاراتر در تشخیص اشیا در تصاویر حقیقی ، فضای جستجوی وسایل نقلیه را در یک وضعیت هوشمند بر پایه ی تصاویر جاده ای ، کاهش می دهیم . در نتیجه با خطوط علامت گذاری شده ی جاده ، کار پردازش برای تشخیص وسیله نقلیه آسانتر می شود . نواحی احاطه شده توسط محدودیت هایی از خطوط ، با انتخاب نواحی مورد نظر ، بررسی می شود .این نواحی ، شامل وسایل نقلیه ی مورد نظر هستند که به عنوان مدل تشخیص و ردیابی وسیله نقلیه به کار می رود .

 1-1- نواحی کاندید شده مورد نظر

سیستم به دو بخش زیر سیستم تقسیم می شود . اولین زیر سیستم مسئول تشخیص و ردیابی خط هاست ، همچنین خط تقاطع بوسیله اولین زیر سیستم طبق خطوط جاده ای ، مورد نظارت قرار گرفته است .

 1-1-1- تشخیص و ردیابی خط

تصاویر به دست آمده از دوربین پردازش شده است و خطوط منحنی که تصویر را پوشش داده اند برای تشخیص خطوط علامت گذاری شده به منظور بدست آوردن تخمینی از خطوط جاده ای که ناحیه ی مورد جستجو را تعیین می کند مناسب هستند .

الگوریتم حدود 50 خط در ناحیه ی مورد جستجورا در فاصله ی 2 متری از دوربین در جهت خط افقی ، بررسی می کند . همچنین با توسعه الگوریتم ، می توان اجزای یک فضای غیر یکنواخت را جستجو کرد .

بردار در حالت نهایی برای هر خط روی جاده شامل 6 متغیر است .

Coh , clh , cov , clv , x0 , q0

که coh و clh پارامترهای انحنایی سطح افق را نمایش می دهد . cov و clv کاندیدی برای پوشش پارمترهای انحنایی عمودی اند و x0 و q0 به ترتیب خطای جانبی و خطای جهت یابی وسیله نقلیه می باشد .

 

 متن کامل را می توانید دانلود نمائید چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)

ولی در فایل دانلودی متن کامل پایان نامه

همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود است

 

 


دانلود با لینک مستقیم


پایان نامه سیستم های تشخیص وسایل نقلیه رشته نرم افزار کامپیوتر

استفاده از دستگاه ها و وسایل آزمایشگاهی

اختصاصی از سورنا فایل استفاده از دستگاه ها و وسایل آزمایشگاهی دانلود با لینک مستقیم و پر سرعت .

استفاده از دستگاه ها و وسایل آزمایشگاهی


استفاده از دستگاه ها و وسایل آزمایشگاهی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)


تعداد صفحه:25

فهرست:

استفاده از دستگاه ها و وسایل آزمایشگاهی

ثبت اطلاعات

تهیة‌گزارش

           وزن خاک مشخص

 

مقدمه

در رشته مکانیک خاک و مهندسی پی یا ( ژئوتکنیک ) ، تعیین مشخصات خاک تعریفی از چگونگی رفتار و ویژگیهای خاک از اهمیت زیادی برخوردار است . در کارهای عمومی که غالباً با خاک سروکار داشته و مجبور به تصرف در وضعیت موجود آن هستیم ، لازم است توانایی خاک برای تحمل بارهای وارده از سوی ما و نیز قابلیت آن به عنوان یک مصالح در روبرو شدن با حالات و شرایط متفاوت مورد بررسی و ارزیابی قرار گیرد . تمام این مطالب ما را به تعریف آزمایشهایی برای تعیین خواص مکانیکی و مقاومتی خاک و نیز احیاناً ویژگیهای فیزیکی آن رهنمون می سازد کشورهای مختلف سعی کرده اند آزمایشهای لازم را بصورتی ثابت تعریف کنند تا قابل استفاده در محلهای مختلف باشد و بتوان از نتایج آن برای مقایسه و نیز انجام کارهای پژوهشی سود و نیز از خطاهای دستگاهی و ... احتراز جست . اکنون تقریباً این آزمایشها به صورت ثابتی تعیین شده اند ، اگر چه ، پیشرفت تکنیک حساسیت ، دقت و یا سرعت آنها افزایش یافته است ولی تغییرات زیادی پیدا نکرده اند . البته ممکن است برای موارد خاصی ، آزمایشهای خاصی نیز ابداع شود . به هر حال در این کتاب با توجه به نیازهای پروژه های عمرانی درگیر با خاک بهتعیین ویژگیهای مقاومتی خاک ، آزمایشهایی ذکر شده است


دانلود با لینک مستقیم


استفاده از دستگاه ها و وسایل آزمایشگاهی