سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله داده کاوی

اختصاصی از سورنا فایل مقاله داده کاوی دانلود با لینک مستقیم و پر سرعت .

مقاله داده کاوی


مقاله داده کاوی

دانلود مقاله داده کاوی 20 ص با فرمت WORD 

 

 

 

 

 

مقدمه:

جهان پیرامون ما سرشار از داده ها و اطلاعات گوناگون می‌باشد. برای پیش بینی گرایشات و جریان های آتی و به منظور اتخاذ تصمیم گیری بهتر در زمینه علوم، تکنولوژی ، صنعت، بازار وغیره.

انسان همواره با اشتیاقی حریصانه به دنبال کشف دانش از این موداب داده ها بوده است. قدیمی ترین دست نوشت ها کشف شده بر روی لوح های گلی مربوط به چهار قرن قبل از میلاد مسیح می‌باشد. با ساخت کاغذ داده های فراوانی بر روی هزاران جلد کتاب وسایر مستندات دیگر وغیره شد.

توامروزه نیز با افزایش روز افزون کاربرد کامپیوتر ها حجم عظیمی از داده ها دیسک های سخت را به صورت اطلاعات دیجیتالی پر کرده اند. با دراختیار داشتن حجم عظیم داده ها مساله اصلی چگونگی یا فتن جمع‌آوری و به کارگیری روش هایی است که بتوان آنها را در کشف دانش از داده ها  و به کارگیری دانش کشف شده در موارد مختلف به کار گرفت.

اگر چه در دهه های اخیر زمینه جدید با عنوان داده کاوی به رواج یافته است ولی عملکردها و وظایف این علم مثل دسته بندی و جداسازی، از سالها پیش وجودداشته و به کار گرفته می شده اند. با توجه به اینکه هدف داده کاوی کشف الگوهای ناشناخته از داده ها می‌باشد روش های این علم از آموزش ماشین،هوش مصنوعی، آمار وغیره مشتق شده اند. با گسترش این علم روش های داده کاوی در زمینه هایی خارج از علوم کامپیوتر وهوش مصنوعی همچون دنیای تجارت وخطوط مونتا کارخانه ها نیز به کار گرفته شد.

بدین ترتیب قابلیت های داده کاوی در زمینه هایی چون افزایش رقابت در بازار تجاری تشخیص کلاه برداری، تشخیص بیماریها با توجه به مدارک پزشکی وغیره نیز مورد آزمایش قرار گرفت و به اثبات رسید.


دانلود با لینک مستقیم


مقاله داده کاوی

دانلود جزوه نگاهی بر داده کاوی و کشف قوانین وابستگی

اختصاصی از سورنا فایل دانلود جزوه نگاهی بر داده کاوی و کشف قوانین وابستگی دانلود با لینک مستقیم و پر سرعت .

دانلود جزوه نگاهی بر داده کاوی و کشف قوانین وابستگی


دانلود مقاله ای در مورد داده کاوی و کشف قوانین وابستگی

موضوعمقاله: داده کاوی و کشف قوانین وابستگی

قالب بندی: word ، قابل ویرایش

تعداد صفحات: 22

شرح مختصر:

چکیده:

با افزایش سیستمهای کامپیوتر و گسترش تکنولوژی اطلاعات , بحث اصلی در علم کامپیوتر از چگونگی جمع آوری اطلاعات به نحوه استفاده از اطلاعات منتقل شده است . سیستمهای داده کاوی ,این امکان را به کاربر می دهند که بتواند انبوه داده های جمع آوری شده را تفسیر کنند و دانش نهفته در آن را استخراج نمایند .

داده کاوی به هر نوع کشف دانش و یا الگوی پنهان در پایگاه داده ها اطلاق می شود . امروزه داده کاوی به عنوان یکی از مهمترین مسائل هوش مصنوعی و پایگاه داده ، محققان بسیاری را به خود جذب کرده است . در این تحقیق ابتدا نگاه کلی بر داده کاوی ، استراتژیهای داده کاوی و... داریم ، سپس  مسأله کشف قوانین وابستگی در پایگاه داده را به تفضیل بررسی کردیم و نگاهی به الگوریتمهای موجود برای آن داشتیم . سپس مسأله کشف قوانین وابستگی در پایگاه داده های پویا را مورد بحث قرار دادیم و الگوریتم های ارائه شده مربوطه را مطرح کردیم .

مقدمه :

هدف از این اراِئه و تحقیق بررسی روشهای مطرح داده کاوی است .داده کاوی هر نوع استخراج دانش و یا الگواز داده های موجود در پایگاه داده است که این دانشها و الگوها ضمنی و مستتر در داده ها هستند ,از داده کاوی می توان جهت امور رده بندی (Classification ) و تخمین (Estimation) ,پیش بینی (Prediction) و خوشه بندی (Clustering)استفاده کرد .داده کاوی دارای محاسن فراوانی است . از مهمترین آن محاسن کشف کردن دانش نهفته در سیستم است که به شناخت بهتر سیستم کمک می کند .به عنوان مثال می توان به استفاده ترکیبی از روش خوشه بندی جهت تخصیص بودجه به دسته های مختلف  از کتب اشاره کرد .

سیستمهای داده کاوی تقریبا از اوایل دهه 1990 مورد توجه قرار گرفتند . علت این امر نیز آن بود که تا آن زمان سازمانها بیشتر در پی ایجاد سیستمهای عملیاتی کامپیوتری بودند که به وسیله آنها بتوانند داده های موجود در سازمان خود را  سازماندهی کنند . پس از ایجاد این سیستمها ,روزانه حجم زیادی از اطلاعات جمع آوری میشد که تفسیر کردن آنها از عهده انسان خارج بود . به همین دلیل , نیاز به تکنیکی بود که از میان انبوه داده معنی استخراج کند و داده کاوی به همین منظور ایجاد و رشد یافت .

بنابر این هدف اصلی از داده کاوی ,کشف دانش نهفته در محیط مورد بررسی است که این دانش می تواند شکلهای گوناگونی داسته باشد . دانش استخراج شده می تواند به فرم الگوهای موجود در داده ها باشد که کشف این الگوها منجر به شناخت بهتر سیستم نیز می شود . الگوهای استخراجی عموما بیانگر روابط بین ویژگیهای سیستم هستند بعنوان مثال در سیستم تجاری یک الگو می تواند بیانگر رابطه بین نوع کالا و میزان تقاضای آن باشد .

در این تحقیق داده کاوی مورد بحث قرار می گیرد . علل استفاده از داده کاوی و منابعی که داده کاوی بر روی آنها اعمال می شود ,علاوه بر این خلاصه ای از روشهای رایج داده کاوی ارائه شده است . تکنیکهای داده کاوی و قوانین وابستگی و الگوریتمهای موجود (Apriori , Aprior TID, Partition, Eclat ,Max Eclat , Vector ) و الگوریتم با ساختار  Trie وfp grow و الگوریتمهای کاهشی مورد بررسی قرار می گیرند و در هر مورد مثالها , موارد کاربرد ,تکنیکها و نقاط قوت و ضعف  مورد بررسی قرار گرفته اند .   

Data mining(داده کاوی)

تعریف :

Data Mining represents a process developed to examine large amounts of

data routinely collected. The term also refers to a collection of tools used to

perform the process. Data mining is used in most areas where data are

collected-marketing, health, communications, etc.

 داده کاوی فرآیند بکارگیری یک یا چند تکنیک آموزش کامپیوتر، برای تحلیل و استخراج  داده های یک پایگاه داده می باشد.در واقع هدف داده کاوی یافتن الگوهایی در داده هاست.

دانش کسب شده از فرآیند داده کاوی بصورت مدل یا تعمیمی از داده ها نشان داده می شود.

چندین روش داده کاوی وجود دارد با این وجود همه روشها “  آموزش بر مبنای استنتاج “ را بکار می برند.

آموزش بر مبنای استنتاج، فرآیند شکل گیری تعاریف مفهوم عمومی از طریق مشاهده مثالهای خاص از مفاهیمی که آموزش داده شده اند، است.

مثال زیر نمونه ای از دانش بدست امده از طریق فرایند اموزش بر مبنای استنتاج است:

آیا تا کنون فکر کرده اید، فروشگاههای بزرگ اینترنتی در mail های خود به مشتریان از چه تبلیغاتی استفاده می کنند؟ و آیا این تبلیغات برای همه مشتریان یکسان است؟

فهرست :

چکیده

مقدمه

کشف دانش در پایگاه داده

آیا داده کاوی برای حل مسائل ما مناسب است؟

جمع آوری داده ها

بکارگیری نتایج

استراتژیهای داده کاوی

پیش گویی Perdiction

Unsupervised Clustering دسته بندی بدون کنترل

تکنیکهای داده کاوی تحت کنترل

شبکه عصبی

برگشت آماری

قوانین وابستگی

الگوریتم  Apriori

الگوریتم Aprior TID

الگوریتم partition

الگوریتم های MaxEclat,Eclat

الگوریتم با ساختار trie

الگوریتم fp-grow

ساخت fp- tree

Fp-tree شرطی

الگوریتم برداری

نگهداری قوانین وابستگی

الگوریتم کاهشی

 


دانلود با لینک مستقیم


دانلود جزوه نگاهی بر داده کاوی و کشف قوانین وابستگی

پایان نامه کاربرد داده کاوی در کشف دانش پنهان میان داده های سامانه 137 شهرداری تهران

اختصاصی از سورنا فایل پایان نامه کاربرد داده کاوی در کشف دانش پنهان میان داده های سامانه 137 شهرداری تهران دانلود با لینک مستقیم و پر سرعت .

پایان نامه کاربرد داده کاوی در کشف دانش پنهان میان داده های سامانه 137 شهرداری تهران


پایان نامه کاربرد داده کاوی در کشف دانش پنهان میان داده های سامانه 137 شهرداری تهران

 

 

 

 

 

 

 

فایل:Word (قابل ویرایش و آماده پرینت) تعداد صفحه:135

چکیده

شهرداری یکی از کلیدی ترین سازمان هایی است که در ارائه ی خدمات شهری به شهروندان نقش مهمی ایفا می کند. این سازمان با به کار بستن دانش فن آوری اطلاعات و سیستم های مخابراتی و نیز توان متخصصان داخلی و مجرب در مدیریت شهری، سامانه ای را ایجاد نموده است که شهروندان را نسبت به محیط زندگی خویش وارد عرصه مدیریت می نماید و تلاش نموده امور شهری را با مشارکت فعال همین شهروندان به انجام رساند. از این رو می توان سامانه ی 137 را بانک اطلاعاتی دانست که داده های ارزشمندی در زمینه ی مسایل شهری در آن جای گرفته است.

اطلاعات حاصل از این سامانه، حاوی مطالب مفیدی در مورد خدمات ارائه شده به شهروندان است و می تواند به عنوان منبعی مهم و مناسب در انجام تحلیل های داده کاوی مورد استفاده قرار بگیرد. به عنوان نمونه با استفاده از این تحلیل ها می توان وقایع و مشکلاتی که ممکن است در آینده گریبان شهر را بگیرد پیش بینی کرد و آماده مقابله با این مشکلات شد.

در این تحقیق که از نوع تحقیقات کاربردی توصیفی محسوب می شود، داده های سال 1389 سامانه 137 با استفاده از نرم افزار کلمنتاین 12 برای انجام فرایند داده کاوی مورد استفاده قرار گرفته است. یکی از نتایج این تحقیق تعیین همگنی مناطق از منظر سامانه 137 با استفاده از تکنیک خوشه بندی به دو دسته است؛ که نشان می دهد مناطقی که در دسته دوم قرار گرفته اند آمادگی و آگاهی بیشتری برای برقراری ارتباط با سامانه دارند و میزان تماس بالاتر شهروندان این مناطق ارتباطی با مشکلات بیشتر آن ها ندارد.

هم چنین با استفاده از قوانین وابستگی ارتباط میان مشکلات، مناطق و نواحی مورد بررسی قرار گرفته است و مشخص گردید کدام نواحی در هر منطقه بیشتر مستعد بروز برخی مشکلات و معضلات شهری هستند که شهرداری می تواند با کسب آمادگی بیشتر از بروز آن جلوگیری نماید.

علاوه بر آن، نتایج به دست آمده، الگوهای جالبی را نیز در پیش بینی تعداد تماس های مربوط به آب گرفتگی و آب افتادگی یک منطقه بر اساس میزان بارش و یا تعیین وابستگی میان پیام های آب گرفتگی بین نواحی مختلف یک منطقه خاص به دست داد.

انتظار می رود نتایج به دست آمده در مدیریت مشکلات شهری و افزایش سطح رضایت مندی شهروندان موثر واقع شود.


دانلود با لینک مستقیم


پایان نامه کاربرد داده کاوی در کشف دانش پنهان میان داده های سامانه 137 شهرداری تهران

داده کاوی کارآمد قوانین پیوستگی فازی از جریان داده های همه جا حاضر

اختصاصی از سورنا فایل داده کاوی کارآمد قوانین پیوستگی فازی از جریان داده های همه جا حاضر دانلود با لینک مستقیم و پر سرعت .

این فایل ترجمه مقاله زیر می باشد:

Efficient mining fuzzy association rules from ubiquitous data stream

دانلود رایگان مقاله انگلیسی

 

چکیده

با توجه به توسعه ی فناوری، تعدادی از برنامه های کاربردی مانند تلفن همراه هوشمند، شبکه های حسگر و دستگاه های GPS مقدار زیادی از داده های همه جا حاضر را در قالب جریان ها تولید می کنند. متفاوت از پایگاه داده های سنتی ایستان، جریان داده ی همه جا حاضر به طور معمول به طور مداوم با سرعت بالا و مقدار زیاد، و با توزیع در حال تغییر داده ها دریافت می شوند. سر و کار داشتن و استخراج اطلاعات مفید از داده یک چالش واقعی می باشد. که باعث به وجود آمدن مسائل جدیدی شده است، که باید برای توسعه تکنیک های استخراج قوانین پیوستگی این داده ها در نظر گرفته شود. لازم به ذکر است، که داده ها، در دنیای واقعی، تنها به شکل باینری و عددی نشان داده نشده است، بلکه ممکن است به صورت مقادیر کمی نیز بیان شود. بنابراین، استفاده از مجموعه های فازی برای کار با این مقادیر بسیار مناسب خواهد بود.

در این مقاله مشکل استخراج قوانین پیوستگی فازی از داده های جریان همه جا حاضر مورد مطالعه قرارگرفته است، و یک روش جدید FFP_USTREAM (جریان های همه جا حاضر الگوی مکرر فازی) توسعه یافته است. این روش مفاهیم فازی را با جریان داده همه جا حاضر، با به کارگیری رویکرد پنجره کشویی، برای کاوش قوانین پیوستگی فازی، ادغام می کند. علاوه بر این، پیچیدگی و کارایی این تکنیک مورد بحث قرار گرفته است. نمونه هایی از مجموعه داده های واقعی برای تست روش استفاده شده است. مسائل تحقیقاتی بیشتر نیز پیشنهاد داده شده است.

توضیحات: فایل ترجمه به صورت word می باشد و دارای 36 صفحه است.


دانلود با لینک مستقیم


داده کاوی کارآمد قوانین پیوستگی فازی از جریان داده های همه جا حاضر