فرمت فایل : WORD (قابل ویرایش)
تعداد صفحات:130
رساله دکتری
فیزیک ماده چگال نظری
فهرست مطالب:
چکیده 1
پیش گفتار 2
فصل اول: نظریه تابعی چگالی
1-1 نظریه تابعی چگالی 9
1-2 مسئله بس- ذرهای 9
1-3 بررسی مختصر DFT 13
1-3-1 نظریه هوهنبرگ-کوهن 13
1-3-2 معادلات کوهن- شم 16
1-3-3 مقدار Exc 20
1-3-3-1 تقریب میدان موضعی 21
1-3-3-2 تقریب چگالی اسپین موضعی 23
1-3-3-3 گامی فراتر: تقریب بسط شیب و تقریب شیب تعمیم یافته(GGA) 24
1-4 مفهوم ویژه مقادیر کوهن- شم 29
1-4-1 ویژه مقادیر ساختگی کوهن- شم 29
1-4-2 مسئله ناپیوستگی XC 30
1-4-3 روش موج تخت و تقریب شبهپتانسیل 35
1-4-3-1 موج تخت 35
1-4-3-2 شبه پتانسیل 38
1-5 نظریه هلمن- فاینمن 42
فصل دوم: نظریه اختلال بس- ذرهای
2-1 مقدمهای بر طیفنماییهای نظری 47
2-1-1 اختلال خارجی و تابع دیالکتریک 49
2-1-1-1 پاسخ خطی طیف اپتیکی 51
2-1-2 طیف الکترونی در KS-DFT 55
2-2 شبه- ذرات و روش توابع گرین 56
2-2-1 نمایش شبه- ذرات و تابع طیفی 59
2-2-2 پنج ضلعی هدین 60
2-2-3 تقریب GW 63
2-3 روش بته- سالپیتر: معادلهی دو- ذرهای مؤثر 66
2-3 -1 اجزاء و تقریبهای BSE 71
فصل سوم: مطالعه ساختار الکترونی نانو صفحه تک لایه و دو لایه شش¬ضلعی بورن- نیترید
3-1 خواص ساختاری و الکترونی دو لایه ششضلعی بورن- نیترید 78
3-2 مدل بستگی قوی برای تک لایه و دو لایه بورن- نیترید 81
3-2-1 شبکه لانه زنبوری h-BN 82
3-2-2 روش کلی 83
3-2-2-1 ماتریس انتقال H 84
3-2-2-2 ماتریس همپوشانی S 86
3-3 نظریه تابعی چگالی 87
3-4 نتایج انطباق طیف انرژی بین DFT و TB برای تک لایه و دو لایه بورن- نیترید 88
فصل چهارم: مطالعه خواص الکترونی و اپتیکی دو لایه شش-ضلعی بورن- نیترید، نتایج
4-1 مقدمه 99
4-2 روش محاسبات 99
4-3 بررسی خواص الکترونی و اپتیکی 102
4-4 جمعبندی 113
پیوست
فعالیتهای پژوهشی 116
فهرست جدولها
جدول 1- 1: خطاءهای نوعی برای اتم ها، مولکول ها، و جامدات از محاسبات کوهن- شم در تقریبهای LSD و GGA در روشی که در این بخش توضیح داده شد. 27
جدول 1- 2: گاف انرژی محاسبه شده برای مواد مختلف در LDA و روش تابع گرین بس- ذرهای که با مقادیر تجربی مقایسه شده است. مقادیر انرژی در eV هستند. 31
جدول 1- 3: ناپیوستگی XC، Δxc، و گاف نواری محاسبه شده برای نیمرساناها و عایقها که با مقادیر تجربی مقایسه شده است. مقادیر انرژی در eV هستند. 35
جدول 3- 1: پارامترهای TB محاسبه شده از بهترین انطباق به دادههای DFT برای تک لایه و دو لایه بورن- نیترید. همه مقادیر در eV هستند. 92
جدول 4- 1: فاصله بین اتمی و فاصله بین لایهای محاسبه شده بورن- نیترید 100
جدول 4- 2: مقادیر گاف نواری (برحسب eV) در روش DFT(LDA) و GW(RPA) 105
جدول 4- 3: مکان اولین قله و انرژی اکسیتون دو لایه h-BN نشان داده شده است 111
جدول 4- 4: ثابت دیالکتریک استاتیک الکترونی و ضریب شکست واقعی دو لایه h-BN برای قطبش نور موازی (راستای x) و قطبش نور عمود (راستای z) به سطح صفحه 111
فهرست شکلها
شکل 1- 1. الگوریتم خود سازگار اصلی 20
شکل 1- 2: اهمیت Δxc مربوط به ساختار نواری کوهن- شم یک نیمرسانا 33
شکل 1- 3: نمایشی از مفهوم شبه پتانسیل 39
شکل 1- 4: شبه تابع موج (خطوط پیوسته) که بشدت داخل منطقه هسته قله دارد و شبه تابع موج فوق نرم که توسط طرح وندربیلت (خطوط خط چین) اصلاح شده است. 42
شکل 2- 1: (الف) فرایند تابش مستقیم (بررسی حالتهای اشغال شده) (ب) فرایند تابش معکوس 48
شکل 2- 2: (الف) فرایند جذب اپتیکی (فوتون hυ بوسیله نمونه جذب شده و باعث برانگیخته شدن یک الکترون از نوار ظرفیت به نوار رسانش میشود) (ب) فرایند طیفنمایی اتلاف انرژی الکترون (بر پایه پراکندگی الکترونها توسط سامانه تحت بررسی) 48
شکل 2- 3: پاسخ محیط قطبیده به پتانسیل خارجی 52
شکل 2- 4: تغییر مقادیر قابل اندازه گیری در مقیاس ماکروسکوپی 53
شکل 2- 5: طرحوارهای از یک سامانه ذرات برهمکنشی قوی که می توان آنرا به یک سامانه از ذرات غیر برهمکنشی KS (سمت چپ) یا یک سامانه از شبه- ذرات برهمکنشی ضعیف (سمت راست)، شبه- ذرات، از طریق معادله توابع گرین نگاشت. 58
شکل 2- 6: نمایش طرحوارهای از تابع طیفی A با گسترش لورنتسی آن، که با تابع طیفی ذرات مستقل، تابع دلتا، مقایسه شده است. 60
شکل 2- 7: طرحی از انتگرال معادله هدین زوج شده. 61
شکل 2- 8: تقریب GW 63
شکل 2- 9: مینیمم انرژیهای گاف انرژی برای انواعی از مواد جامد 65
شکل 2- 10: طرحوارهای برای تعیین طیف اپتیکی در BSE. 73
شکل 3- 1. (الف) نمای بالا و (ب) نمای جانبی از دو لایه h-BN. 79
شکل 3- 2: (الف) نمایشی از شبکه لانه زنبوری با زیر شبکه های A و B، سلول واحد، و بردارهای اصلی a1 و a2 80
شکل 3- 3: نمایشی از پنج امکان انباشته شدن دو لایه BN 81
شکل 3- 4: هیبریداسیون sp2 در گرافن 82
شکل 3- 5: سه بردار ml، اشاره به نزدیکترین همسایه های اتم B دارد. 85
شکل 3- 6: سلول واحد در نظر گرفته شده در این بخش برای (الف) تک لایه و (ب) دو لایه بورن- نیترید. 88
شکل 3- 7: ساختار نواری تک لایه شش ضلعی بورن- نیترید برای (الف) DFT و (ب) TB. 89
شکل 3- 8: ساختار نواری دو لایه شش ضلعی بورن- نیترید برای (الف) DFT و (ب) TB. 90
شکل 3- 9: انطباق ساختار نواری DFT و TB برای (الف) تک لایه و (ب) دو لایه ششضلعی بورن- نیترید. 91
شکل 3- 10: (الف) نمایش طرحوارهای از ساختار ZGNR/BNAM/ZGNR (ب) نمایش طرحوارهای از مولکولهای آروماتیک بورن- نیترید (BNAMs) برای N=1, 2, 3 93
شکل 3- 11: (الف) و (ج) احتمال گسیل (Tr) و چگالی حالت الکترونی (DOS) بر حسب انرژی برای ساختار ZGNR/AM/ZGNR 95
شکل 3- 12: احتمال گسیل (Tr) برحسب تابعی از تغییرات در تعداد مولکولهای آروماتیک بورن- نیترید (N=1, 2… 10) برای انرژی فرودی (الف)E=2eV و (ب) E=2.5eV متصل شده به نانو نوار گرافن زیگ- زاگ. 96
شکل 4- 1: (الف) یاخته اولیه نمای جانبی و (ب) نمای بالا دو لایه h-BN. (ج) ابر یاخته و فاصله بین لایهای d و فاصله بین دو لایه b برای دو لایه h-BN. 100
شکل 4- 2: نمودار تغییرات انرژی کل برحسب تغییرات ثابت شبکه با تقریب LDA برای دو لایه h-BN. 101
شکل 4- 3: نمایشی از طرح انجام گرفته در محاسبات. 102
شکل 4- 4: همگرایی گاف نواری مستقیم و غیر مستقیم شبه- ذرات بر حسب (الف) و (ب) تعداد شبکه سازی منطقه وارون، (ج) و (د) تعداد باندهای در نظر گرفته شده در محاسبات. 103
شکل 4- 5: ساختار نواری الکترونی دو لایه بورن- نیترید در طول راستاهای تقارنی که در روش DFT(LDA) (خط پر) و تقریب GW(RPA) (خط چین) رسم شده است 104
شکل 4- 6: (الف) قسمت موهومی (طیف جذب اپتیکی) و (ب) قسمت حقیقی تابع دیالکتریک دو لایه بورن- نیترید، برای قطبش نور موازی (راستای x) به سطح صفحه، با استفاده از روش LDA-RPA محاسبه شده است 106
شکل 4- 7: (الف) قسمت موهومی (طیف جذب اپتیکی) و (ب) قسمت حقیقی تابع دیالکتریک دو لایه بورن- نیترید، برای قطبش نور موازی (راستای y) به سطح صفحه، با استفاده از روش LDA-RPA محاسبه شده است 107
شکل 4- 8: (الف) قسمت موهومی (طیف جذب اپتیکی) و (ب) قسمت حقیقی تابع دیالکتریک دو لایه بورن- نیترید، برای قطبش نور عمود (راستای z) به سطح صفحه، با استفاده از روش LDA-RPA محاسبه شده است 107
شکل 4- 9: (الف) قسمت موهومی (طیف جذب اپتیکی) و (ب) قسمت حقیقی تابع دیالکتریک دو لایه بورن- نیترید، برای قطبش نور موازی (راستای x) و قطبش نور عمود (راستای z) به سطح صفحه، با استفاده از روش LDA-RPA محاسبه شده است 108
شکل 4- 10: (الف) قسمت موهومی (طیف جذب اپتیکی) و (ب) قسمت حقیقی تابع دیالکتریک دو لایه بورن- نیترید 110
شکل 4- 11: توزیعهای بار اکسیتونی از حالتهای اکسیتونی (الف) روشن و (ب) تاریک در دو لایه h-BN، با حفره قرار گرفته در نقطه سیاه 112
چکیده
امروزه بطور گستردهای نانو صفحات چند لایه شش¬ضلعی بورن- نیترید، بعلت خواص الکترونی و اپتیکی بسیار جذاب آن¬ها، بطور تجربی و نظری مورد مطالعه قرار گرفته-اند. هدف اصلی این پروژه بررسی خواص الکترونی و اپتیکی نانو ساختارهایی همچون، نانو صفحات بورن- نیترید، با استفاده از نظریه¬های GW و BSE در محدوده پاسخ خطی می¬باشد. در مبحث خواص الکترونی ما به محاسبه انرژی و ساختار نواری و طیف چگالی حالت شبه- ذرات خواهیم پرداخت. همچنین، از یک مدل بستگی قوی برای ساختار نواری تک- لایه و دو- لایه بورن- نیترید استفاده می¬کنیم و شاخص¬های جهش و انرژی¬های جایگاهی را با استفاده از انطباق طرح بستگی قوی و داده¬های نظریه تابعی چگالی بدست خواهیم آورد. در مبحث خواص اپتیکی، قسمت¬های حقیقی و موهومی (جذب اپتیکی) تابع دی¬الکتریک، در اثر قرار دادن نانو صفحه در دو راستای میدان موازی (قطبش موازی) و میدان عمودی (قطبش عمودی)، و همچنین انرژی و اثرات اکسیتونی و تابع توزیع احتمال الکترون در اثر قرار دادن مکان حفره در جایگاه ثابت، را بدست خواهیم آورد.
بنابراین، با توجه به این¬که محاسباتی در زمینه¬ی تاثیر آثار بس- ذره¬ای برای نانو صفحات چند لایه شش¬ضلعی بورن- نیترید انجام نشده است، این نتایج برای مطالعات تجربی و نظری آینده روی این¬چنین ساختارها می¬تواند مفید باشد.
کلمات کلیدی: اثرات بس-ذره¬ای، تقریب GW، نانو صفحات چند لایه شش¬ضلعی بورن- نیترید، اثرات اکسیتونی، شبه- ذرات،
پیش گفتار
در سال¬های اخیر، پژوهش¬های گسترده¬ای در زمینه¬ی سامانه-های نانو ساختار انجام شده است، بخصوص با کوچک¬تر شدن اجزای تشکیل دهنده¬ی قطعات الکترونیکی، بررسی نانو ساختارها اهمیت زیادی در زمینه¬ی علوم و صنعت پیدا کرده است. خواص فیزیکی این نانو ساختارها، بویژه خواص الکترونی و اپتیکی آن¬ها، به رفتار و حالت¬های الکترونی آن¬ها بستگی دارد. از این¬رو، محاسبه حالت های الکترونی مواد و تعیین ساختار نواری انرژی در آن¬ها از مهمترین مباحث پژوهشی نظری و تجربی در فیزیک ماده چگال است. با توجه به این که بطور کلی گاز الکترون در یک جامد یک سامانه برهمکنش¬گر است، بنابراین راه حل اساسی برای محاسبه حالت¬های الکترونی مواد به حل مسئله بس- ذره¬ای منتهی می¬شود. از این¬رو، از آغاز پایه گذاری علم فیزیک ماده چگال، تلاش پژوهشگران بر این بوده است تا بعنوان یک تقریب، مسئله بس- ذره¬ای گاز الکترون جامد را به یک مسئله قابل حل تبدیل نمایند. کلیه متون مربوط به زمینه ماده چگال و روش¬های مختلف و گوناگون محاسبات ساختار نوارهای انرژی الکترونی جامدات، حکایت از به کارگیری انواع تقریب¬هایی است که برای حل معادله شرودینگر انجام می¬شود. خوشبختانه علی¬رغم تقریبی بودن روش¬های بس¬- ذره¬ای، این روش¬ها موفقیت عملی فوق¬العاده¬ای را از خود نشان داده¬اند و بنابراین در مواردی که پیچیدگی¬های ناشی از آثار برهم¬کنش الکترون¬ها در رفتار نهایی سامانه مؤثر باشند باید در حد امکان و با روش-های مختلف حداکثر آثار بس- ذره¬ای را در محاسبات دخالت داد. در هر صورت باید توجه داشت که هر روش تقریبی گستره اعتبار خاصی دارد.
اما امروزه، هدف اغلب پژوهش¬های نظری بر پایه مکانیک کوانتوم، در زمینه مباحث فیزیک ماده چگال و شیمی، یافتن برهم¬کنش¬های اصلی نمی¬باشد بلکه پرداختن به حل معادله شرودینگر از یک تابع هامیلتونی مشهور است که از حل آن اطلاعات مفیدی حاصل می¬شود. به¬ هرحال این هامیلتونی یک مسئله بس- ذر¬ه¬ای را توضیح می¬دهد و برای تعداد بیشتر از 10 الکترون، حل دقیق آن از لحاظ عددی عملاً امکان پذیر نیست. بعلاوه حل دقیق آن، شامل مجموعه-ای از اطلاعات است که بدون ساده¬سازی و تجزیه و تحلیل، به سختی قابل فهم است و برای یک مسئله و شرایط مشخص حاوی تعداد زیادی جزئیات است، که احتمالاً مورد علاقه نیست [1]. بنابراین بازنویسی مجدد مسئله و کار با توابع هامیلتونی مؤثر یا مقادیر انتظاری انتخاب شده که برای حل یک مسئله کاهش یافته مناسب می¬باشند، اغلب بهتر است. این روش بطور ایده¬ال هم محاسبه و هم تجزیه و تحلیل مقادیر مدنظر را ساده خواهد نمود.
نظریه تابعی چگالی (DFT) [2و3] یکی از متداول¬ترین روش¬هایی است که برای محاسبات خواص حالت پایه طراحی شده است و بر پایه اطلاع از تابع چگالی n(r) بجای تابع موج بس- ذره¬ای کامل از یک سیتم N ذره¬ای پایه¬گذاری شده است. مبانی نظریه DFT بر اساس نظریه هوهنبرگ-کوهن- شم [2] بصورت زیر است:
1. چگالی الکترونی حالت پایه از یک سامانه برهم¬کنشی از الکترون¬، می¬تواند بطور کامل، پتانسیل خارجی¬ v(r)، که الکترون¬ها تجربه می¬کنند و بنابراین هامیلتونی، تابع موج بس- ذره¬ای، و همه کمیت¬های مشاهده پذیر از سامانه، را تعیین ¬کند.
2. یک تابعی F[n]وجود دارد بطوری¬که انرژی کل E[n] می-تواند بصورت زیر نوشته شود:
(1-1)
این F یک تابعی عمومی است بطوری¬که وابستگی تابعی¬اش به چگالی برای همه سامانه¬های با برهم¬کنش ذره- ذره مشابه، یکسان است.
پایان نامه مطالعه خواص الکترونی و اپتیکی نانو صفحات چند لایه ششضلعی بورن- نیترید: از نظریه تابعی چگالی تا اثرات بس- ذرهای