لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 42
بسم الله الرحمن الرحیم
پروژه فازی
استاد راهنما :جناب آقای دکتر یعقوبی
توسط : فاطمه دهقان
A genetic fuzzy k-Modes for clustering categorical data
الگوریتم genetic fuzzy k-Modes
برای خوشه بندی داده های گروهی
اسفند 87
فهرست
چکیده
مقدمه (3)
مروری بر روش های قبل (7)
1.2 - الگوریتمk-Means Hard (7)
1.1.2 - مثالی عددی از الگوریتم k-Means (9)
2.2- الگوریتم Fuzzy c-Means (13)
3.2- الگوریتم Hard k-Modes (15)
4.2- الگوریتم fuzzy k-Modes (18)
3- الگوریتم پیشنهادی : genetic fuzzy k-Modes (21)
نتایج آزمایش (25)
نتیجه گیری (32)
پیوست – کد برنامه
مراجع
چکیده
خوشه بندی روشی است که داده های یک مجموعه داده را به گروه یا خوشه تقسیم می کند . از مرسوم ترین روش های خوشه بندی،الگوریتم های خوشه بندی k-Means وfuzzy k-Means می باشند.این دو الگوریتم فقط روی داده های عددی عمل می کنند و به منظور رفع این محدودیت، الگوریتم های k-Modes و fuzzy k-Modes ارائه شدند که مجموعه داده های گروهی (دسته ای) را نیز خوشه بندی می کنند. . با این وجود، این الگوریتم ها ،شبیه همه روال های بهینه سازی دیگر که برای مینیمم عمومی یک تابع جستجو می کنند، احتمال گیر افتادن در یک مینیمم محلی وجود دارد. به منظوردستیابی به جوبب بهینه عمومی ، الگوریتم های تکاملی مانند ژنتیک و جدول جستجو با الگوریتم های مذکور ترکیب می شوند. در این پژوهش، الگوریتم ژنتیک ، GA، را با الگوریتم fuzzy k-Modes ترکیب شده ،بطوریکه عملگر ادغام به عنوان یک مرحله از الگوریتم fuzzy k-Modes تعریف می شود. آزمایش ها روی دو مجموعه داده واقعی انجام شده است تا همراه با مثال کارایی الگوریتم پیشنهادی را روشن نماید.
1.مقدمه
به عنوان یک ابزار اولیه در داده کاوی ،تجزیه و تحلیل خوشه ، که تجزیه و تحلیل سگمنت نیز نامیده می شود،روشی است که داده ها را به گروه هایی همگن تحت عنوان خوشه تقسیم می کند.در چنین روشی داده های موجود در یک کلاستر یا خوشه خیلی شبیه به هم و داده ها ی کلاستر های مختلف خیلی متفاوت نسبت به هم هستند.اغلب، شباهت بر مبنای معیار فاصله می باشد.
آنالیز خوشه،خوشه بندی، تکنیک عمومی برای آنالیز داده های آماری می باشد که در بسیاری زمینه ها مانند یادگیری ماشین ، داده کاوی ، شناسایی الگو و آنالیز تصویر کاربرد دارد.در کنار اصطلاح خوشه بندی داده (یا فقط خوشه بندی)،بعضی اصطلاحات دیگرنیزهمانند کلاس بندی اتوماتیک ،طبقه بندی عددی، آنالیز نوع شناسی ، با معنای مشابه استفاده می شود[1].
به طور کلی ،یک الگوریتم خوشه بندی خوب معمولا برای طراحی شامل چهار فاز ذیل را شامل می شود:1- نمایش داده2- مدل کردن.3- بهینه سازی.4- اعتبار سنجی[2] ..
فاز نمایش داده، تعیین می کند که چه نوعی از ساختارهای خوشه می تواند داده ها را شناسایی کند.سپس فاز مدلینگ ضوابط و معیار ها را برروی ساختار تعریف می کند بطوریکه که ساختارها ی گروه های مطلوب را از موارد نامطلوب مجزا می کند.در فاز مدلینگ ، در طول جستجو برای ساختار های مخفی در داده ،یک معیار کیفیت مانند معیار بهینه سازی یا معیار تقریب تولید می شود. بعبارتی دیگرفاز بهینه سازش،ساختار های
دانلود تحقیق کامل درباره پروژه فازی 42 ص