لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 26
ایده آل های خطی به ترتیب کوهن-مکوالی
چکیده- G را یک نمودار غیرمستقیم ساده n راسی در نظر بگیرید و بگذارید برایده آل خطی مرتبطش دلالت کند. مانشان می دهیم که تمام نمودارهای و تری G ، به ترتیب کوهن- مکوالی هستند ، دلیل ما بر پایه نشان دادن این است که دوگانه الکساندر I(G) ،خطی و ازمولفه است.
نتیجه ما فرضیه فریدی را که می گوید ایده آل درخت ساده شده به ترتیب کوهن- مکوالی، هرزوگ، هیبی، می باشد، وفرضیه ژنگ که می گوید یک نمودار وتری کوهن-مکوالی است اگر و تنها اگر ایده آل خطی اش در هم ریخته نباشد، را تکمیل می کند. ما همچنین ویژگی های دایره های مرتب کوهن- مکوالی را بیان می کنیم و نمونههایی از گراف های مرتب غیروتری کوهن- مکوالی را هم ارائه می کنیم.
1-مقدمه
G را یک گراف ساده n راسی در نظر بگیرید پس G هیچ حلقه یا خطوط چندگانه ای پهن دو راس ندارد.) رئوس ومجموعه های خطی G توسط EG,VG را به ترتیب نشان دهید. ما ایده آل تک جمله ای غیر مربع چهارگانه با K که یک میزان است و جایی که را به G ارتباط می دهیم.ایده ال ایده آل خطی Gنامیده می شود.
توجه اولیه این مقاله ایده آل های خطی گراف های وتری است. یک گراف G وتری است اگر هر دایره طول یک وتر داشته باشد. اینجا اگر ،خطوط یک دایره طول n باشند، ما می گوییم که دایره وری یک وتر دارد اگر دو راس xj,xi در دایره به نحوی وجود داشته باشند که یک خط برای G باشند اما خطی در دایره نباشد.
ما می گوییم که یگ گراف G کوهن –مکوالی است اگر کوهن-مکوالی باشد. چنانکه هرزوگ، هیبی و ژنگ اشاره می کنند، طبقه بندی تمام گراف های کوهن-مکوالی شاید اکنون قابل کشیدن نباشند، این مسئله به سختی طبقه بندی کردن تمام مجموعه های ساده شده کوهن-مکوالی است.]9[.البته هرزوگ، هیبی و ژنگ در ]9[ ثابت کردند که وقتی G یک گراف وتری باشد،پس G در هر میدانی کوهن-مکوالی است اگر وفقط اگر به هم نریخته باشد.
ویژگی کوهن –مکوالی به ترتیب بودن، که شرایطی است ضعیف تر از کوهن-مکوالی بودن، توسط استنلی ]14[ در ارتباط با تئوری قابلیت جدا شدن غیرخالص معرفی شد.
تعریف 1-1- را در نظر بگیرید. یک M معیار B درجه دار کوهن –مکوالی به ترتیب نامیده می شود اگر یک تصفیه معین از معیارهای R درجه بندی وجود داشته باشد.
به نحوی که کوهن –مکوالی باشد، و ابعاد کرول خارج قسمت در حال افزایش باشند:
ما میگوییم یک گراف G کوهن-مکوالی به ترتیب است و در K اگر کوهن-مکوالی به ترتیب باشد. ما می توانیم به نتیجه هرزوگ، هیبی و ژنگ بر سیم البته با استفاده از این تضعیف شرایط کوهن-مکوالی. نتیجه اصلی ما فرضیه زیر است (که مستقل از خاصیت (K) است.
فرضیه 2-1 فرضیه 2-3.تمام گراف های وتری کوهن-مکوالی به ترتیب هستند.
تحقیق درباره ایده آل های خطی به ترتیب کوهن مکوالی