دانلود پایان نامه ترانزیستورهای اثر میدانی تونلی (TFET ) و بهینه سازی مشخصات آن
در این پایان نامه اصول فیزیکی حاکم بر افزاره TFET و همچنین مشخصه های الکتریکی افزاره مورد بررسی قرار گرفته است. در فصل سوم آثار کانال کوتاه افزاره TFET با افزاره MOSFET مقایسه شده است. یکی از چالش های اصلی در TFET، بهینه سازی لحظه ای نسبت Ion/Ioff است. در فصل چهارم کارهایی که تاکنون برای افزایش نسبت Ion/Ioff انجام شده است مورد بررسی قرار می گیرد. در فصل پنجم، چهار ساختار بدیع برای کاهش جریان نشستی افزاره و افزایش نسبت Ion/Ioff ارائه شده است. ساختارهای پیشنهادی با شبیه ساز افزاره DESSIS شبیه سازی شده اند. ساختار اول، TFET تک گیتی با اکسید گیت نامتقارن است که در مقایسه با TFET تک گیتی با اکسید گیت متقارن سرعت کلیدزنی بالایی دارد. ساختار دوم TFET دو گیتی با اکسید گیت نامتقارن است که در مقایسه با TFET تک گیتی با اکسید گیت نامتقارن، جریان حالت روشن دو برابر دارد. ساختار سوم TFET تک گیتی با اکسید Low-k و ساختار چهارم TFET دو گیتی با اکسید low-k است که دارای مشخصات زیر آستانه قابل توجهی نسبت به TFET تک گیتی است.
مقدمه:
با پیشرفت فناوری، ابعاد افزاره MOSFET کاهش یافته و به رژیم نانومتر مقیاس شده است. هدف از مقیاس بندی بیش از حد افزاره ها، دستیابی به مداراتی است که توان مصرفی اندک، سرعت زیاد و چگالی افزاره بالایی دارند. لیکن با کاهش طول گیت آثار کانال کوتاه (SCEs) پدیدار شده و مقیاس بندی افزاره را محدود می کند. آثار کانال کوتاه شامل افزایش جریان نشتی، کاهش سد پتانسیل القاء شده توسط درین (DIBL)، سوراخ شدگی، اشباع سرعت و… است که منشأ تمام آنها افزایش عرض ناحیه تخلیه در طرف درین است. در افزاره های MOSFET، آثار کانال کوتاه برای طول گیت های کمتر از 100nm ظاهر شده و باعث می شود منحنی مشخصه خروجی افزاره (ID-VDS) حتی در ناحیه اشباع به مقدار ثابتی نرسد.
آثار کانال کوتاه موجب کاهش کارآیی افزاره می گردد، لذا نیاز به افزاره های جدید برای مقابله با SCEs روز به روز بیشتر احساس می شود. یکی از افزاره هایی که اخیرا مطرح شده TFET می باشد. این افزاره برای اولین بار توسط “توشیو بابا” در سال 1992 پیشنهاد شد. با پیشرفت فناوری و نیاز به افزاره های با جریان نشتی کم برای کاربردهای توان پایین، TFET مورد توجه قرار گرفته است. تاکنون کارهای متعددی برای بهینه سازی مشخصات TFET صورت گرفته است. این افزاره نسبت به MOSFET، جریان نشت استاتیک کمتری دارد و در مقابل SCEs مقاوم تر است.
فصل اول: کلیات
مقدمه:
ترانزیستور اثر میدان تونلی (TFET) یک دیود p-i-n بایاس معکوس است که پتانسیل ناحیه ذاتی آن توسط گیت کنترل می شود. در این فصل مؤلفه های جریان بایاس معکوس یک پیوند p-n شرح داده می شود. در ادامه با تاریخچه افزاره TFET و چالش اصلی در آن آشنا می شویم و به بررسی کارهای انجام شده برای بهبود مشخصه Ion/Ioff خواهیم پرداخت.
1-1- پیوند p-n تحت شرایط بایاس معکوس
شکل (1-1) یک پیوند p-n را تحت شرایط بایاس معکوس نشان می دهد. با افزایش بایاس معکوس، ممکن است که جریان دیود به طور فزاینده ای افزایش یابد. این پدیده که شکست نامیده می شود ممکن است به لحاظ یکی از سه منشأ زیر به وجود آید. اولین علتی که بررسی خواهیم کرد، سوراخ شدن خوانده می شود.
1-1-1- سوراخ شدن
با افزایش بایاس معکوس، عرض ناحیه تخلیه که بر روی آن پتانسیل افت می کند، افزایش می یابد. وضعیت را در نظر بگیرید که در آن ناحیه ای که آلایش زیادی از نوع p دارد، در مجاورت ناحیه ای که دارای آلایش اندک نوع n است قرار داشته باشد. در این صورت ناحیه تخلیه طرف n بسیار بزرگتر از ناحیه تخلیه طرف p است. در ولتاژ زیاد معینی، ناحیه تخلیه طرف n به اتصال اهمی طرف n خواهد رسید. اگر ولتاژ باز هم افزایش یابد، اتصال رسوخ میدان الکتریکی را احساس خواهد کرد و الکترون در اختیار دیود p-n قرار خواهد داد. در نتیجه دیود اتصال کوتاه می شود و جریان صرفا توسط مقاومت های مدار خارجی محدود می گردد.
2-1-1- یونیزه شدن برخوردی یا شکستن بهمنی
افزایش بایاس معکوس موجب افزایش انرژی حامل ها می شود، در این شرایط الکترونی که خیلی داغ می باشد، از الکترونی که در نوار ظرفیت قرار دارد، از طریق برهم کنش کولمبی پراکنده می شود و آن را به نوار هدایت پرتاب می کند. الکترون اولیه باید انرژی کافی را برای بالا بردن الکترون از نوار ظرفیت به نوار هدایت فراهم آورد. بنابراین انرژی الکترون اولیه باید کمی بزرگتر از شکاف انرژی (که نسبت به کمینه نوار هدایت اندازه گیری می شود) باشد. حال در تراز نهایی، دو الکترون در نوار هدایت و یک حفره در نوار ظرفیت داریم. بنابراین تعداد بارهایی که جریان را حمل می نمایند، تکثیر یافته است. این پدیده اغلب پدیده بهمنی نامیده می شود. توجه داشته باشید که این مسأله برای حفره های داغ نیز ممکن است اتفاق بیفتد و حفره ها نیز می توانند آغازگر پدیده بهمنی باشند.
مقدمه ای بر کربن و اشکال مختلف آن در طبیعت و کاربردهای آن. 3
1-2 گونه های مختلف کربن در طبیعت.. 4
1-2-4 فلورن و نانو لوله های کربنی.. 5
1-3 ترانزیستورهای اثر میدانی فلز- اکسید - نیمرسانا و ترانزیستور های اثرمیدانی نانولوله ای کربنی.. 8
بررسی ساختار هندسی و الکتریکی گرافیت و نانولولههای کربنی.. 11
2-2-3 هیبریداسون اربیتالهای کربن.. 15
2-3 ساختار هندسی گرافیت و نانولوله ای کربنی.. 19
2-3-1 ساختار هندسی گرافیت.. 19
2-3-2 ساختار هندسی نانولوله های کربنی.. 22
2-4 یاختهی واحد گرافیت و نانولوله ای کربنی.. 26
2-4-1 یاختهی واحد صفحه ی گرافیت.. 26
2-4-2 یاخته واحد نانولوله ای کربنی.. 27
2-5 محاسبه ساختار نواری گرافیت و نانولوله ای کربنی.. 29
2-5-2 ترازهای انرژی گرافیت.. 31
2-5-3 ترازهای انرژی نانولوله ای کربنی.. 33
2-5-4 چگالی حالات در نانولوله ای کربنی.. 37
2-6 نمودار پاشندگی فونونها در صفحه ی گرافیت و نانولوله های کربنی.. 38
2-6-1 مدل ثابت نیرو و رابطه ی پاشندگی فونونی برای صفحه ی گرافیت.. 39
2-6-2 رابطه ی پاشندگی فونونی برای نانولوله های کربنی.. 46
3-3 محاسبه نرخ پراکندگی کل. 53
3-4 شبیه سازی پراکندگی الکترون – فونون. 56
3-6 ضرورت تعریف روال واگرد. 59
4-3 تابع توزیع در شرایط مختلف فیزیکی.. 64
4-4 بررسی سرعت میانگین الکترونها، جریان، مقاومت و تحرک پذیری الکترون. 66
4-4-1 بررسی توزیع سرعت در نانولوله های زیگزاگ نیمرسانا 66
4-4-2 بررسی جریان الکتریکی در نانولوله های زیگزاگ نیمرسانا 68
4-4-3 بررسی مقاومت نانولوله های زیگزاگ نیمرسانا 68
4-4-3 بررسی تحرک پذیری الکترون در نانولوله های زیگزاگ نیمرسانا 69
ضمیمه ی (الف) توضیح روال واگرد. 73
فهرست شکلها
شکل1-1. گونههای مختلف کربن... 6
شکل 1-2. ترانزیستور اثر میدانی 9
شکل 1-3. ترانزیستور نانولولهی کربنی 10
شکل 2-5. یاختهی واحد گرافیت 21
شکل2-6. یاختهی واحدنانولولهی کربنی 23
شکل 2-7. گونههای متفاوت نانولولههای کربنی 25
شکل 2- 8. تبهگنی خطوط مجاز در نانولولهی کربنی 36
شکل 2-9. مؤلفههای ماتریس ثابت نیرو. 43
فهرست جدولها
جدول 2-1 عناصر ماتریس ثابت نیرو. 43
فهرست نمودارها
نمودار 2-1. نوار انرژی الکترونی گرافیت 33نمودار 2-2. نوار انرژی الکترونی نانولولهی کربنی. 36
نمودار 2-3. چگالی حالات در نانولولهی کربنی 38
نمودار 2-4. نوار سه بعدی انرژی فونونی گرافیت 45
نمودار 2-5. نوار انرژی فونونی در راستای خطوط متقارن منطقه اول بریلوئن 45
نمودار 2-6. نوار انرژی فونونی نانولولهی کربنی 47
نمودار 3-1. سطح فرمی در نانولوههای کربنی... 54
نمودار 3-2. منطقهی تکرار شونده در نانولولههای کربنی 60
نمودار 3-3. نقاط متقارن در مسئله پراکندگی 61
نمودار 4-1. نرخ پراکندگی در دو نانولولهی زیگزاگ و .......... 63
نمودار 4-2. وابستگی دمایی نرخ پراکندگی 63
نمودار4-3. تابع توزیع در میدان ضعیف و قوی نانولولهی 64
نمودار4-4. تابع توزیع در میدان ضعیف و قوی نانولولهی 65
نمودار 4-5. وابستگی سرعت میانگین الکترون به دما در نانولولهی کربنی... 67
نمودار 4-6. توزیع سرعت در نانولولههای زیگزاگ... 67
نمودار 4-7. نمودار جریان – ولتاژ در مورد نانولولههای زیگزاگ... 68
نمودار 4-8. مقاومت نانولولههای مختلف 69
فهرست پیوستها
پیوست الف: توضیح روال واگرد. 73
شامل 82صفحه
فایل ورد و قابل ویرایش
دانلود پایان نامه ترانزیستورهای اثر میدانی تونلی (TFET ) و بهینه سازی مشخصات آن