سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پایان نامه تحلیل و حفاظت توربین های بادی و کنترل توان تولیدی نیروگاه بادی

اختصاصی از سورنا فایل دانلود پایان نامه تحلیل و حفاظت توربین های بادی و کنترل توان تولیدی نیروگاه بادی دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه تحلیل و حفاظت توربین های بادی و کنترل توان تولیدی نیروگاه بادی


دانلود پایان نامه تحلیل و حفاظت توربین های بادی و کنترل توان تولیدی نیروگاه بادی

دانلود پایان نامه تحلیل و حفاظت توربین های بادی و کنترل توان تولیدی نیروگاه بادی


همراه با شبیه سازی با نرم افزار متلب

تبدیل انرژی باد به انرژی مکانیکی و سپس انرژی الکتریکی در توربین های بادی انجام می شود. توربین های بادی در اندازه های مختلف با اجزای مختلف و ویژگی های متفاوت با توجه به شرایط محیط و میزان نیاز تولید توان الکتریکی ساخته می شوند، این توربین ها از پره ها با قطر روتور چندین متر تا حدود ۱۰۰ متر برای تولید توان های چندین کیلووات تا ۲۰۰۰ کیلووات مورد استفاده قرار می گیرند علاوه بر تولید توان الکتریکی از توربین های بادی برای پمپاژ آب نیز استفاده می شود.

انرژی باد یکی از صورت های منابع انرژی تجدید پذیر است که با توجه به ویژگی مشترک انرژی های تجدید پذیر به صورت گسترده با تمرکز کم (چگالی کم) در اختیار بشر قرار گرفته است. نوعی از انرژی خورشید است که بر اثر اختلاف دمای بین دو ناحیه تولید می شود ناحیه سرد پر فشار و ناحیه گرم کم فشار است. طی سالهای اخیر تولید برق به وسیله توربین های بادی افزایش پیدا کرده است. توربین های جدید به صورت های متفاوت متصل به شبکه و یا منفعل از شبکه و به صورت تولید پراکنده در سیستم های قدرت مورد استفاده قرار می گیرند.

در این پروژه در مورد انواع توربین ها و مکانیزم عملکرد و طراحی آنها توضیح داده شده است. همچنین در مورد حفاظت توربینها و کنترل توان نیروگاه ها توسط توربینها به مواردی اشاره شده است. ﻛﺸﻮر اﻳﺮان ﻫﺮ ﻃﺮف ﺑﺎ ﻛﻮﻫ ﻬﺎی مرﺗﻔﻌﻲ ﻣﺤﺼﻮر ﮔﺸﺘﻪ اﺳﺖ. اﻳﺮان ﺑﺎ ﻣﻮﻗﻌﻴﺖ ﺟﻐﺮاﻓﻴﺎﻳﻲ ﻛﻪ دارد در آﺳﻴﺎ ﺑﻴﻦ ﺷﺮق و ﻏﺮب و ﻧﻮاﺣﻲ ﮔﺮم ﺟﻨﻮب و ﻣﻌﺘﺪل ﺷﻤﺎﻟﻲ واﻗﻊ ﺷﺪه اﺳﺖ و در ﻣﺴﻴﺮ ﺟﺮﻳﺎن های ﻋﻤﺪه ﻫﻮاﻳﻲ ﺑﻴﻦ آﺳﻴﺎ، اروﭘﺎ، اﻓﺮﻳﻘﺎ، اﻗﻴﺎﻧﻮس ﻫﻨﺪ و ‫اﻗﻴﺎﻧﻮس اﻃﻠﺲ ﻗﺮار ﮔﺮﻓﺘﻪ اﺳﺖ. همین امر باعث پیشرفت سریع در استفاده از نیروگاه بادی خواهد شد.

 

فهرست مطالب

فصل ۱-   تاریخچه توربین های بادی

۱-۱-     ﺗﺎرﻳﺨﭽﻪ

۱-۲-     ﺗﺠﺮﺑﻪ اﻳﺮاﻧﻴﺎن

۱-۳-     ‫ﺗﺠﺮﺑﻪ آﻣﺮﻳﻜﺎیی ها

۱-۴-     ‫ﺗﺠﺮﺑﻪ داﻧﻤﺎرﻛﻲ ها

۱-۵-     ﺗﺠﺮﺑﻪ ﻓﺮاﻧﺴﻮی ﻫﺎ

۱-۶-   ‫ﺗﺠﺮﺑﻪ روﺳﻬﺎ

۱-۷-     ﺗﺠﺮﺑﻪ ﻫﻠﻨﺪی ﻫﺎ

۱-۸-     ‫ﺗﺠﺮﺑﻪ اﻧﮕﻠﻴﺴﻲ ﻫﺎ

۱-۹-   ‫ﺗﺠﺮﺑﻪ آﻟﻤﺎﻧﻲ ﻫﺎ

۱-۱۰-   ‫ﻛﻠﻴﺎﺗﻲ درﺑﺎره اﻧﺮژی ﺑﺎد

۱-۱۱- ‫ﻣﻨﺒﻊ اﻧﺮژی ﺑﺎدی

۱-۱۲- ‫ﺑﺎد

۱-۱۳- ‫اﻧﻮاع ﺑﺎدﻫﺎ

۱-۱۳-۱-  ‫ﺑﺎدﻫﺎی ﻣﺤﻠﻲ

۱-۱۳-۲-  ﺑﺎدﻫﺎی ﻣﻮﺳﻤﻲ

۱-۱۳-۳-  ﺑﺎدﻫﺎی ﺗﺠﺎرﺗﻲ

۱-۱۳-۴-  ﺑﺎدﻫﺎی ﻏﺮﺑﻲ

۱-۱۴-   ‫ﺟﺪول ﺑﻮﻓﻮرت

۱-۱۵-   ‫ﺗﻐﻴﻴﺮات ﺳﺮﻋﺖ ﺑﺎد

۱-۱۶-   مزایای استفاده از توربین‌ های بادی

۱-۱۷-   رشد ظرفیت توربینهای بادی تا پایان سال ۲۰۰۴

فصل ۲-   توربین بادی و انواع آن

۲-۱-     توربین بادی

۲-۲-     توربینهای بادی چگونه کار می کنند

۲-۳-     ﺗﻘﺴﻴﻢ ﺑﻨﺪی ﺗﻮرﺑﻴﻦ ﻫﺎی ﺑﺎدی

۲-۴-   ﻗﺴﻤﺖ ﻫﺎی ﺗﺸﻜﻴﻞ ﺷﺪه دو ﻧﻮع ﺗﻮرﺑﻴﻦ ﺑﺎدی

۲-۵-     ساختمان توربین بادی

۲-۶-     انواع توربین های بادی

۲-۶-۱-       توربین های بادی با سرعت ثابت

۲-۶-۲-       توربین های بادی با سرعت متغیر

۲-۷-     مفاهیم کنترل توان

۲-۸-     انواع ژنراتورهای مدرن

۲-۸-۱-       نوع A سرعت ثابت

۲-۸-۲-       نوع B سرعت متغیر محدود

۲-۸-۳-       نوع C سرعت متغیر با مبدل فرکانسی با ظرفیت کسری

۲-۸-۴-       نوع D سرعت متغیر با مبدل فرکانسی با ظرفیت کامل

۲-۹-     ژنراتورهای آسنکرون (القایی)

۲-۱۰-   ژنراتور سنکرون

۲-۱۱-   انواع توربین های مختلف با کاربردهای مختلف

۲-۱۱-۱-     توربینی برای بادهای کم سرعت

۲-۱۱-۲-     توپ ‌بازی با توربین ‌ها

۲-۱۱-۳-     توربین مکعب بادی

۲-۱۱-۴-     توربین اسکای ‌استریم

۲-۱۱-۵-     تولید برق با سرعت باد

۲-۱۱-۶-     توربین مارپیچی

۲-۱۱-۷-     فرفره‌ های فرودگاه لوگان

۲-۱۱-۸-     اصلاح طرح‌های قدیمی

۲-۱۱-۹-     توربین‌هایی با محور قائم

۲-۱۱-۱۰-  پل بادی خورشیدی

۲-۱۲-   برق بادی در مقیاس‌های کوچک

۲-۱۲-۱-     توربین Air x

۲-۱۲-۲-     توربین Air  BREEZE

۲-۱۲-۳-     توربین Sky Stream

۲-۱۲-۴-  توربین Whisper 100

۲-۱۲-۵-     توربین Whisper 200

۲-۱۲-۶-  توربین Whisper 500

فصل ۳-   مکانیزم عملکرد و طراحی توربین های بادی

۳-۱-     ﺗﻮرﺑﻴﻦ ﺑﺎدی ﭼﮕﻮﻧﻪ ﻛﺎر ﻣﻲ ﻛﻨﺪ

۳-۲-   تغییرپذیری باد و قدرت توربین

۳-۳-   تعیین محل توربین‌های بادی

۳-۴-   نصب توربین ‌ها نزدیک ساحل

۳-۵-   نصب توربین‌ ها دور از ساحل

۳-۶-     توربین ‌های هوائی (معلق در هوا)

۳-۷-   نیروگاه های بادی کوچک

۳-۸-   رشد و روند هزینه

۳-۹-   ذخیره انرژی

۳-۱۰- اکولوژی (شناخت محیط زیست) و آلودگی تولید گاز  Co2 و آلودگی محیط زیست

۳-۱۱- تأثیر نیروگاه های بادی در حیات وحش

۳-۱۲- ‫اﺟﺰاء اﺻﻠﻲ ﺗﻮرﺑﻴﻨﻬﺎی ﺑﺎدی

۳-۱۲-۱-     ﭘﺮه ﻫﺎی BLADES

۳-۱۲-۲-  ‫‪‫ﺗﺮﻣﺰ  BRAKE

۳-۱۲-۳-     ‫‪‫ ﺑﺨﺶ ﻛﻨﺘﺮل Controller

۳-۱۲-۴-  وظایف کنترلر

۳-۱۲-۵-     ‫ﺟﻌﺒﻪ دﻧﺪه – ﮔﻴﺮﺑﻜﺲ

۳-۱۲-۶-  ‫‪ ژﻧﺮاﺗﻮر

۳-۱۲-۷-     ‫‪ ﻧﺎﺳﻞ

۳-۱۲-۸-    ‫‪روﺗﻮر  ‫

۳-۱۲-۹-     ‫‪ دﻛﻞ

۳-۱۲-۱۰-   ‫‪ ﺳﻨﺴﻮرﻫﺎی اﻧﺪازه ﮔﻴﺮی

۳-۱۲-۱۱-  بادسنج

۳-۱۲-۱۲-   ‫‪ ﻣﻮﺗﻮر اﻧﺤﺮاف

۳-۱۲-۱۳-  بادنما

۳-۱۲-۱۴-  بیرینگ یاو

۳-۱۲-۱۵-  موتورهای یاو

۳-۱۲-۱۶-   ﺷﻔﺖ ﺳﺮﻋﺖ ﺑﺎﻻ

۳-۱۲-۱۷-   ‫‪ﺷﻔﺖ ﺳﺮﻋﺖ ﭘﺎﻳﻴﻦ

۳-۱۲-۱۸-   سیستم خنک کننده

۳-۱۲-۱۹-‫‪ اﺳﺘﻘﺮار ﭘﺮه ﻫﺎ

۳-۱۳-   واحد تولید کاور و نوزکن

۳-۱۳-۱-  کاور

۳-۱۳-۲-  نوزکن

۳-۱۴- ﺳﺎﺧﺘﻤﺎن ﭘﺮه ﻫﺎی ﺗﻮرﺑﻴﻦ ﺑﺎدی

۳-۱۴-۱-     معرفی پره و مشخصات فنی آن

۳-۱۵-   مراحل ساخت پره های توربین بادی

۳-۱۵-۱-  عملیات برش

۳-۱۵-۲-  ساخت تیرک حمال (SPAR) اصلی

۳-۱۵-۳-  ساخت تیرک حمال (SPAR) کوچک

۳-۱۵-۴-  ساخت پوسته و مونتاژ پره

۳-۱۵-۵-     فرایند عملیات ‌نهایی و نصب بلبرینگ و بالانس پره

۳-۱۶-   ‫ﺗﻨﻈﻴﻢ دور ﺗﻮرﺑﻴﻦ ﻫﺎی ﺑﺎدی

۳-۱۷- ‫ﻗﺮار دادن ﺗﻮرﺑﻴﻦ در ﺟﻬﺖ ﺑﺎد

۳-۱۸-   ‫ژﻧﺮاﺗﻮرﻫﺎی ﻣﻮﻟﺪ ﺑﺮق

۳-۱۹-   ‫ﺗﺮاﻧﺴﻔﻮرﻣﺎﺗﻮرﻫﺎ

۳-۲۰-   ‫ﺗﻨﻈﻴﻢ ﻛﻨﻨﺪه ﻫﺎی وﻟﺘﺎژ

۳-۲۱- ‫ﺗﻨﻈﻴﻢ ﻛﻨﻨﺪه ﺑﺎر

فصل ۴-   ﺣﻔﺎﻇﺖ ﺗﻮرﺑﯿﻨﻬﺎی ﺑﺎدی

۴-۱-     ﺧﻼﺻﻪ

۴-۲-     ‫ﻣﻘﺪﻣﻪ

۴-۳-     ‫آﺳﯿﺐ ﻫﺎی ﻣﺴﺘﻘﯿﻢ و ﻏﯿﺮ ﻣﺴﺘﻘﯿﻢ

۴-۳-۱-       ﺷﺪت ﺟﺮﯾﺎن ﺻﺎﻋﻘﻪ

۴-۳-۲-       ‫ اﻧﺮژی وﯾﮋه

۴-۳-۳-       ‫ اﻧﺘﻘﺎل ﺑﺎرﻫﺎی اﻟﮑﺘﺮﯾﮑﯽ

۴-۳-۴-       ‫ ﺳﺮﻋﺖ اﻓﺰاﯾﺶ ﺟﺮﯾﺎن

۴-۴-     ‫ﭘﯿﺶ ﺑﯿﻨﯽ ﻣﯿﺰان وﻗﻮع

۴-۵-     ‫‫ﺗﻮﺻﯿﻪ ﻫﺎﯾﯽ ﺑﺮای ﻃﺮاﺣﺎن

۴-۶-     ‫ﺣﻔﺎﻇﺖ ﭘﺮه ﻫﺎی ﺗﻮرﺑﯿﻦ

۴-۷-   ‫ﺣﻔﺎﻇﺖ ﺳﯿﺴﺘﻢ ﻫﺎی اﻟﮑﺘﺮوﻧﯿﮑﯽ

۴-۸-     ﺑﺤﺚ و ﻧﺘﯿﺠﻪ ﮔﯿﺮی

فصل ۵-    کنترل ﺗﻮان ﺗﻮﻟﯿﺪی ﻧﯿﺮوﮔﺎه ﺑﺎدی

۵-۱-     ﺧﻼﺻﻪ

۵-۲-   ‫ﻣﻘﺪﻣﻪ

۵-۳-     ‫ﺳﺎﺧﺘﺎر ژﻧﺮاﺗﻮر ﺑﺎدی ﻣﺘﺼﻞ ﺑﻪ ﺷﺒﮑﻪ

۵-۴-   ‫ﻗﺪرت ﺗﻮرﺑﯿﻦ ﺑﺎدی

۵-۵-     ‫ﻣﺪل رﯾﺎﺿﯽ ژﻧﺮاﺗﻮر آﺳﻨﮑﺮون ﻣﺘﺼﻞ ﺑﻪ ﺷﺒﮑﻪ

۵-۶-     ‫اﯾﺪه اﺻﻠﯽ زﯾﺮ ﺳﯿﺴﺘﻢ ﮐﻨﺘﺮل

۵-۶-۱-       ‫زیر سیستم کنترل Feed forward

۵-۶-۲-       کنترل بدون Feed forward

۵-۶-۳-       ‫ﻣﺪل رﯾﺎﺿﯽ ﺳﯿﺴﺘﻢ ﻋﻤﻠﮕﺮ

۵-۷-     ‫ﻣﻄﺎﻟﻌﺎت ﻋﺪدی

۵-۸-     ‫ﻧﺘﯿﺠﻪ ﮔﯿﺮی

فصل ۶-    وزش ﺑﺎد در اﻳﺮان

۶-۱-     ﻣﻮﻗﻌﻴﺖ ﺟﻐﺮاﻓﻴﺎﻳﻲ اﻳﺮان

۶-۲-   ‫ﺑﺎدﻫﺎی اﻳﺮان

۶-۳-   ‫ﺧﻼﺻﻪ دو ﻣﻄﺎﻟﻌﻪ ﺑﺮای ﺗﻌﻴﻴﻦ ﻣﺤﻞ ﻧﺼﺐ ﺗﻮرﺑﻴﻦ ﺑﺎدی

۶-۳-۱-       ‫ﺑﺮرﺳﻲ اﻧﺮژی ﺑﺎد در ﻣﻨﻄﻘﻪ ﻣﻨﺠﻴﻞ

۶-۳-۲-       ‫ﻣﻄﺎﻟﻌﻪ آﻣﺎری ﺑﺎد در ﺣﺎﺷﻴﻪ ﻣﻨﺎﻃﻖ ﻛﻮﻳﺮی اﻳﺮان

۶-۳-۳-     ‫ﺿﺮﻳﺐ ﻳﻜﭙﺎرﭼﮕﻲ

۶-۳-۴-     ‫ﺳﻄﺢ ﺟﺎرو ﺷﺪه ﺗﻮﺳﻂ ﭘﺮه ﻫﺎی ﺗﻮرﺑﻴﻦ

۶-۳-۵-     ‫ﺿﺮﻳﺐ ﺳﺮﻋﺖ ﻧﻮک

۶-۳-۶-       ﺗﻮرﺑﻴﻦ ﻫﺎی ﺑﺎدی ﻣﻮﻟﺪ ﺑﺮق ﻣﻨﺠﻴﻞ

۶-۳-۷-     ‫اجزای ﺗﻮرﺑﻴﻦ ﻫﺎی ﺑﺎدی ﻣﻨﺠﻴﻞ

۶-۴-     ‫ﺗﻮﺳﻌﻪ ﺗﻮرﺑﻴﻦ ﻫﺎی ﺑﺎدی در ﺟﻬﺎن

۶-۵-   ‫نیروگاه عظیم بادی به قدرت ۲۵۰۰ کیلووات

۶-۵-۱-       ‫ﻣﺸﺨﺼﺎت ﻧﻴﺮوﮔﺎه ﻋﻈﻴﻢ ﺑﺎدی

۶-۵-۲-       ‫وزن ﺗﻮرﺑﻴﻦ ﺑﺎدی ﻓﻮق

۶-۶-     ‫ﭘﺮوژه ﻫﺎی ﺑﺎد

۶-۶-۱-       ‫ﺳﺎﻳﺖ رودﺑﺎر

۶-۶-۲-       ‫ﺳﺎﻳﺖ ﻣﻨﺠﻴﻞ

۶-۷-     ‫‫ﻃﺮاﺣﻲ، ﺳﺎﺧﺖ و ﻧﺼﺐ ﺗﻮرﺑﻴﻦ ﺑﺎدی ۱۰ ﻛﻴﻠﻮوات ﺳﻬﻨﺪ

۶-۷-۱-     ‫‫ﺗﻌﺮﻳﻒ ﭘﺮوژه

۶-۷-۲-       ‫ﺷﺮح ﻓﻌﺎﻟﻴﺖ ﻫﺎ

۶-۸-     نیروگاه بادی بینالود (اولین مزرعه بادی در ایران)

۶-۸-۱-       ظرفیت استفاده از انرژی بادی در ایران

۶-۸-۲-       ویژگی و ساخت نیروگاه بادی بینالود

۶-۸-۳-       شبکه انتقال و توزیع برق منطقه بینالود

۶-۸-۴-       ساخت اجزای نیروگاه بادی در داخل کشور

۶-۸-۵-       برنامه توسعه انرژی باد

فصل ۷-   شبیه سازی پروژه در نرم افزار Digsilent و matlab

۷-۱-   Digsilent

۷-۲-   شبیه سازی در نرم افزار متلب

 

اﺟﺰای ﺗﻮرﺑﻴﻨﻬﺎی ﺑﺎدی , اجزای نیروگاه بادی , انرژی باد , انرژی بادی , انواع توربین بادی , بررسی نیروگاه بادی , پروژه اﻧﺮژی ﺑﺎد , تاریخچه توربین های بادی , تحلیل توربین های بادی , تحلیل نیروگاه بادی , توربین بادی , حفاظت توربین های بادی , ساختمان توربین بادی , شبیه سازی نیروگاه بادی با digsilent , شبیه سازی نیروگاه بادی با matlab , شبیه سازی نیروگاه بادی با دیگسایلنت , شبیه سازی نیروگاه بادی با متلب , طراحی توربین های بادی , کنترل توان نیروگاه بادی , مکانیزم عملکرد توربین های بادی ,

 


دانلود با لینک مستقیم


پروژه رشته برق نقش توان راکتیو در شبکه های انتقال و فوق توزیع

اختصاصی از سورنا فایل پروژه رشته برق نقش توان راکتیو در شبکه های انتقال و فوق توزیع دانلود با لینک مستقیم و پر سرعت .

پروژه رشته برق نقش توان راکتیو در شبکه های انتقال و فوق توزیع


پروژه رشته برق نقش توان راکتیو در شبکه های انتقال و فوق توزیع

دانلود پروژه رشته برق نقش توان راکتیو در شبکه های انتقال و فوق توزیع با فرمت ورد و قابل ویرایش تعداد صفحات 105

دانلود پروژه آماده

 

چکیده:

در این پروژه در مورد نقش توان راکتیو در شبکه های انتقال و فوق توزیع بحث شده است و شامل 5 فصل می باشد که در فصل اول در مورد جبران بار و بارهایی که به جبران سازی نیاز دارند و اهداف جبران بار و جبران کننده های اکتیو و پاسیو و از انواع اصلی جبران کننده ها و جبران کننده های استاتیک بحث شده است و در فصل دوم در مورد وسایل تولید قدرت راکتیو بحث گردیده و درمورد خازنها و ساختمان آنها و آزمایش های انجام شده روی آنها بحث گردیده است و  در فصل سوم در مورد خازنهای سری و کاربرد آنها در مدارهای فوق توزیع و ظرفیت نامی آنها اشاره شده است و در فصل چهارم در مورد جبران کننده های دوار شامل ژنراتورها و کندانسورها و موتورهای سنکرون صحبت شده است و در فصل پنجم  ترجمه متن انگلیسی که از سایتهای اینترنتی در مورد خازنهای سری می باشد که در مورد UPFC می باشد.

 

مقدمه

توان راکتیو یکی از مهمترین عواملی است که در طراحی و بهره برداری از سیستم های قدرت AC منظور می گردد علاوه بر بارها اغلب عناصر یک شبکه مصرف کننده توان راکتیو هستند بنابراین باید توان راکتیو در بعضی نقاط سیستم تولید و سپس به محل‌های موردنیاز منتقل شود.

در فرمول شماره (1-1)  ملاحظه می گردد

قدرت راکتیو انتقالی یک خط انتقال به اختلاف ولتاژ ابتدا و انتها خط بستگی دارد همچنین با افزایش دامنه ولتاژ شین ابتدائی قدرت راکتیو جدا شده از شین افزایش می‌یابد و در فرمول شماره (2-1) مشاهده می گردد که قدرت راکتیو تولید شده توسط ژنراتور به تحریک آن بستگی داشته و با تغییر نیروی محرکه ژنراتور می توان میزان قدرت راکتیو تولیدی و یا مصرفی آن را تنظیم نمود در یک سیستم به هم پیوسته نیز با انجام پخش بار در وضعیت های مختلف می‌توان دید که تزریق قدرت راکتیو با یک شین ولتاژ همه شین ها  را بالا می برد و بیش از همه روی ولتاژ همه شین تأثیر می گذارد. لیکن تأثیر زیادی بر زاویه ولتاژ شین ها و فرکانس سیستم ندارد بنابراین قدرت راکتیو و ولتاژ در یک کانال کنترل می شود که آنرا کانال QV قدرت راکتیو- ولتاژ یا مگادار- ولتاژ می گویند در عمل تمام تجهیزات یک سیستم قدرت برای ولتاژ مشخص ولتاژ نامی طراحی می شوند اگر ولتاژ از مقدار نامی خود منحرف شود ممکن است باعث صدمه رساندن به تجهیزات سیستم یا کاهش عمر آنها گردد برای مثال گشتاور یک موتور القایئ یک موتور با توان دوم و ولتاژ ترمینالهای آن متناسب است و یا شارنوری که لامپ مستقیماً با ولتاژ آن تغییر می نماید بنابراین تثبیت ولتاژ نقاط سیستم از لحاظ اقتصادی عملی نمی باشد از طرف دیگر کنترل ولتاژ در حد کنترل فرکانس ضرورت نداشته و در بسیاری از سیستم ها خطای ولتاژ در محدوده 5% تنظیم می شود. توان راکتیو مصرفی بارها در ساعات مختلف در حال تغییر است لذا ولتاژ و توان راکتیو باید دائماً کنترل شوند در ساعات پربار بارها قدرت راکتیو بیشتری مصرف می کنند و نیاز به تولید قدرت راکتیو زیادی در شبکه می باشد اگر قدرت راکتیو موردنیاز تأمین نشود اجباراً ولتاژ نقاط مختلف کاهش یافته و ممکن است از محدوده مجاز خارج شود. نیروگاه های دارای سیستم کنترل ولتاژ هستند که کاهش ولتاژ را حس کرده  فرمان کنترل لازم را برای بالا بردن تحریک ژنراتور و درنتیجه افزایش ولتاژ ژنراتور تا سطح ولتاژ نامی صادر می کند با بالا بردن تحریک (حالت کار فوق تحریک) قدرت  راکتیو توسط ژنراتورها تولید می شود لیکن قدرت راکتیو تولیدی ژنراتورها به خاطر مسائل حرارتی سیم پیچ ها محدود بوده و ژنراتورها به تنهایی نمی تواند در ساعات پربار تمام قدرت راکتیو موردنیاز سیستم را تأمین کنند بنابراین در این ساعات به وسایل نیاز است که بتواند در این ساعات قدرت راکتیو اضافی سیستم را مصرف نمایند نیاز می باشد. وسائلی را که برای کنترل توان راکتیو و ولتاژ بکار می روند «جبران کننده» می نامیم.


دانلود با لینک مستقیم


مکان یابی بهینه کنترل کننده های یکپارچه توان جهت افزایش بار پذیری خطوط و بهبود پروفیل ولتاژ توسط الگوریتم هوشمند جدید

اختصاصی از سورنا فایل مکان یابی بهینه کنترل کننده های یکپارچه توان جهت افزایش بار پذیری خطوط و بهبود پروفیل ولتاژ توسط الگوریتم هوشمند جدید دانلود با لینک مستقیم و پر سرعت .

مکان یابی بهینه کنترل کننده های یکپارچه توان جهت افزایش بار پذیری خطوط و بهبود پروفیل ولتاژ توسط الگوریتم هوشمند جدید


 مکان یابی بهینه کنترل کننده های یکپارچه توان جهت افزایش بار پذیری خطوط و بهبود پروفیل ولتاژ توسط الگوریتم هوشمند جدید

 

 

 

 

 

چکیده 1
مقدمه 2
فصل اول : کلیات 3
مقدمه 4
5 (FACTS) 1-1 ) سیستم های انتقال انعطاف پذیر جریان متناوب
2-1 ) محدودیت های طبیعی سیستم های انتقال 6
7 FACTS 3-1 ) کنترل کننده های
4-1 ) تحلیل سیستم قدرت در حالت ماندگار 11
12 (FACTS) فصل دوم : معرفی ادوات
1-2 ) جبران سازهای موازی 13
13 SVC (1-1-2
15 STATCOM (2- 1-2
2-2 ) جبران کننده های سری 16
16 (Thyristor Control Series Capacitor) TCSC (1-2-2
2- )انتقال دهنده فاز استاتیکی 17 2-2
19 SSSC (3- 2-2
3-2 جبران کننده سری- موازی 21
فصل سوم پخش توان در حضور کنترل کننده های یکپارچه توان 23
1-3 مقدمه 23
2-3 مفاهیم کلی پخش توان 24
1-2- رابطه اساسی 24 3
2-2- طبقه بندی متغیر ها و باسها 27 3
3- روشهای حل پخش توان 28 3
1-3- الگوریتم های اولیه پخش توان 28 3
2-3- پخش بار جدا شده 32 3
33 (FACTS) 4- پخش توان با حضور کنترل کننده های 3
34 FACTS 1-4- روش های حل پخش توان با حضور کنترل کننده های 3
ز
2-4-3 مدل پخش توان 36
فصل چهارم: مروری بر الگوریتم های هوشمند 39
1-4 الگوریتم ژنتیک 39
1-1-4 مقدمه 39
2-1-4 زمینه های بیولوژیکی 39
3-1-4 فضای جستجو 41
2-4 مسائل 42
3-4 مفاهیم اولیه در الگوریتم ژنتیک 43
1-3-4 اصول پایه 43
2-3-4 شمای کلی الگوریتم ژنتیک 43
کدکردن) 44 ) Encoding 3-3-4
4-4 انواع کدینگ 44
1-4-4 روشهای کدینگ 45
1-1-4- کدینگ باینری 45 4
2-1-4- کدینگ جهشی 45 4
3-1-4- کدینگ ارزشی 46 4
4-1-4- کدینگ درختی 46 4
2-4- مسائل مربوط به کدینگ 47 4
3-4-4 کروموزوم 50
4-4-4 جمعیت 50
51 Fitness Value 5-4-4 مقدار برازندگی
5- عملگر تقاطعی 51 4
6-4 عملگر جهشی 53
7- مراحل اجرای الگوریتم ژنتیک 55 4
8- حل یک مساله نمونه توسط الگوریتم ژنتیک 59 4
9- همگرایی الگوریتم ژنتیک 61 4
10-4 برتری ها و ضعف های الگوریتم ژنتیک 61
62 PSO 11- الگوریتم بهینه سازی انبوه ذرات 4
1-11- مقدمه 62 4
65 (PSO) 2-11- الگوریتم بهینه سازی انبوه ذرات 4
67 PSO 3-11- پارامتر های 4
71 PSO 12-4 برخی نسخه های تغییر یافته ی
ح
باینری 72 PSO 1-12- الگوریتم 4
73 FPSO فازی یا PSO -2-12-4 الگوریتم
با این الگوریتم 75 UPFC فصل پنجم: الگوریتم قورباغه و استراتژی مکان یابی
1-5 مدل ریاضی کنترل کننده های یکپارچه توان 75
79 UPFC 2-5 مدل به کار رفته برای جایابی بهینه
3-5 الگوریتم بهینه سازی و پیاده سازی آن 80
80 ( SFLA ) 1-3-5 الگوریتم قورباغه
2-3-5 بهبود اصلاح قانون جهش در الگوریتم قورباغه 83
85 UPFC 4-5 مطالعه اول مکان یابی
1-4-5 تابع هدف 85
86 ( MSFLA ) 2-4-5 دستورالعمل الگوریتم قورباغه بهبود یافته
5-5 سیستم تحت مطالعه 88
91 UPFC 6-5 مطالعه دوم مکان یابی
1-6-5 مدار معادل کنترل کننده یکپارچه توان 91
2-6-5 . معادلات کنترل کننده یکپارچه توان 91
3-6-5 استراتژی بهینه سازی الگوریتم قورباغه بهبود یافته 92
4-6-5 . نتایج شبیه سازی 94
94 IEEE 5-6-5 سیستم 14 شینه
96 IEEE 6-6-5 سیستم 118 شینه
فصل ششم : نتیجه گیری 99
نتیجه گیری 99 
پیوست ها 100 
برنامه کامپیوتری نیوتن رافسون 100 I پیوست
107 Fast Decoupled برنامه کامپیوتری II پیوست
110 UPFC مدل پخش بار III پیوست
الگوریتم ژنتیک در نرم افزار 121 IV پیوست
الگوریتم بهینه سازی اجتماع ذرات در نرم افزار 123 V پیوست
اطلاعات شبکه ها 125 VI پیوست
مقالات 133 VII پیوست
مراجع 138
چکیده انگلیسی 147


دانلود با لینک مستقیم


بررسی و نظارت همه جانبه کیفیت توان در شبکه های قدرت

اختصاصی از سورنا فایل بررسی و نظارت همه جانبه کیفیت توان در شبکه های قدرت دانلود با لینک مستقیم و پر سرعت .

بررسی و نظارت همه جانبه کیفیت توان در شبکه های قدرت


سمینار ارشد برق بررسی و نظارت همه جانبه کیفیت توان در شبکه های قدرت

 

 

 

 

چکیده:

در این سمینار هدف عمده، بررسی همه جانبه کیفیت توان در شبکه های قدرت می باشد. پس از کسب آگاهی در مورد کیفیت توان و هارمونیک ها، نظارت و شناسایی منابع اختلال زا مطرح می گردد. در ابتدا مسائل کیفیت توان و کلیه پدیده هایی که در حوزه کیفیت توان قرار می گیرد، بحث و بررسی شده است. پدیده های مختلفی که در شبکه رخ می دهد با توجه به دامنه، زمان و نوع پدیده تقسیم بندی شده است و همگی مورد مطالعه قرار گرفته است. منابع هارمونیک زا به صورت کلی معرفی شده است و همگی مورد مطالعه قرار گرفته است. با توجه به توضیحات، ادوات الکترونیک قدرت امروزه جزو منابع عمده هارمونیک در شبکه می باشند و انواع این ادوات و هارمونیک های تولیدی به وصورت کامل توضیح داده شده است. مسئله بعدی میان هارمونیک ها می باشد که از جنبه های مختلفی همچون نحوه تولید، منابع و روش تشخیص مورد بررسی قرار گرفته است. اثراتی که منابع هارمونیک زا بر روی شبکه برق می گذارند مطرح شده است و اثرات هارمونیک بر روی تجهیزات برقی همچون تراس، ماشین و غیره به صورت جداگانه بررسی شده است و سپس روش های کنترلی جهت حفاظت تجهیزات حساس در برابر هارمونیک ها مطرح شده است. این سمینار تمامی مسائل مربوط به کیفیت توان و هارمونیک مورد بررسی قرار گرفته است. در فصل آخر یک روش جهت مونیتورینگ شبکه برق و کیفیت توان در شبکه ارائه شده است. در این روش با تعداد اندازه گیر کم می توان بر تمامی باس های شبکه به صورت کامل دسترسی داشت که این روش بر پایه یک الگوریتم پیشنهادی می باشد و از نوع محاسباتی می باشد. مزین این روش در این است که اطلاعات کاملاً دقیقی در مورد تماس باس ها می دهد. روش ارتباطی GPRS جهت تبادل اطلاعات ما بین اندازه گیرها در این سمینار پیشنهاد و بررسی شده است.

مقدمه:

در یک سیستم قدرت از دیدگاه کیفیت توان، هدف اصلی، تحویل برق سالم به مشترکین برق می باشد. به عبارت دیگر، شرکت های توزیع تلاش می کنند که برق را با کیفیت بالا در اختیار مشترکان قرار دهد. در سالیان گذشته کیفیت برق در مسائلی همچون قطعی برق،افت ولتاژ و غیره خلاصه می شد و شرکت های برقی نیز موظف بودند تا با بهبود خط انتقال و توزیع خود کیفیت برق را بالا ببرند اما امروزه مسائل دیگری همچون هارمونیک، اعوجاج شکل موج و غیره وجود دارد که عمدتاً ناشی از مشترکان صنعتی که از ادوات الکترونیک قدرت استفاده می کنند می باشد. به بیان دیگر، بعضی از مشترکین صنعتی که متصل به شبکه می باشند تزریق هارمونیک به شبکه دارند و این امر باعث ایجاد اختلال در ولتاژ شبکه برق می گردد و دیگر مشترکین برق نیز ناسالمی دریافت می نمایند. به همین خاطر باید این مشترکین شناسایی گردند و همچنین نوع اختلالی که به شبکه وارد می نمایند مشخص گردد تا نسبت به بهبود آن اقدام شود. با توجه به اینکه هارمونیک یکی از مسائل عمده کیفیت توان می باشد در این سمینار منابع هارمونیک زا به صورت کامل طبقه بندی و توضیح داده شده است و میان هارمونیک نیز توضیح داده شده است. برای نظارت و مانیتورینگ شبکه برق راه های متعددی وجود دارد که در این سمینار یکی از این روش ها ارائه شده است و مزیت روش توضیح داده شده در این است که اطلاعات بدست آمده واقعی می باشند.

 

تعداد صفحه :124


دانلود با لینک مستقیم