سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درمورد نظریه احتمال و مجموعه های فازی 23 ص

اختصاصی از سورنا فایل تحقیق درمورد نظریه احتمال و مجموعه های فازی 23 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 23

 

 

دانشگاه علامه طباطبائی

دانشکده اقتصاد

رشته آمار

پایان نامه جهت دریافت درجه کارشناسی

موضوع :

نظریه احتمال و مجموعه های فازی

استاد راهنما :

جناب آقای دکتر شهرام سلیلی

دانشجو :

هدیه شادمانی

سال تحصیلی 84-83

فهرست مطالب

عنوان صفحه

نظریه احتمال و مجموعه های فازی

1_ مقدمه 1

2- اندازه های فازی 2

3- نرم ها و هم نرم های مثلثی 4

4- مکمل سازی 9

5- دسته های فازی 12

6- اندازه های پیشامدهای فازی 15

7- فهرست منابع 21

نظریه احتمال و مجموعه های فازی

1ـ مقدمه

زمینه نظریه احتمال کلاسیک مبتنی بر اصل مدل کلموگروف است بطوریکه پیشامدها به صورت زیر مجموعه‌ی معمولی از یک مجموعه مرجع X می‌باشند. این پیشامد ها یک ـ جبر A را تشکیل می‌دهند. احتمال P به عنوان یک تابع حقیقی روی A تعریف می‌شود و شرایط مرزی و P(X)=1 در مورد آن صدق می‌‌کند و برای هر ترتیب از پیشامدهای دوبدو ناسازگار دارای خاصیت _ جمعی می‌باشد و اگر شرط مرزی P(X)=1 را تغییر دهیم آن‌گاه به فهوم اندازه دست می‌یابیم. یک شاخه مهم از نظریه‌ی فازی با استنباط ها از احتمال P ( و احیاناً ـ جبر A ) تا زمانی که مفهوم زیر مجموعه های معمولی باقی بماند و تغییر نکند در ارتباط است. این عنوان موضوع اصلی این مقاله نیست به هر حال به بعضی از این استنباط ها در فصل 2 اشاره می‌شود.

مجموعه‌های فازی توسط زاده ( Zadeh) در سال 1965 به عنوان تعمیم مجموعه‌های معمولی معرفی شدند. ( توسط تابع مشخصه‌های آن ها ارائه داده شدند.) که بصورت تابعی از مجموعه مرجع X به بازه واحد [0,1] هستند. ما تعمیم‌ها و استنباط‌های ممکن دیگر را حذف خواهیم کرد. ( برای مرور عمیق تر بر نظریه مجموعه فازی و کاربرد آن‌ها به مقاله ] 27[ توجه کنید.) تعمیم کاربرد اشتراک، اجتماع و مکمل‌سازی در نظریه مجموعه های معمولی به مجموعه‌های فازی معمولاً بصورت نقطه به نقطة‌ صورت می‌گیرد.

دو تابع دو متغیره

 

و یک تابع یک متغیره و تعمیم آن ها از طریق معمولی است:

اگر A و B دو زیر مجموعه‌ی فازی از X باشند آن‌گاه برای هر داریم:

 

در تحت بعضی‌ از شرایط طبیعی T به یک نرم مثلثی Sklar و Schweizer ] 30[ تغییر پیدا می کند. بطور مشابه S نیز یک هم نرم مثلثی است. T و S در بخش 3 مورد بحث قرار خواهند گرفت. تابع مکمل C و روابط بین S , T در بخش 4 بحث خواهند شد. توجه کنید که اشتراک و اجتماع‌هائی که


دانلود با لینک مستقیم


تحقیق درمورد نظریه احتمال و مجموعه های فازی 23 ص
نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد