سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره آنالیز عملکرد حداقل احتمال بلوکه شدن مکالمه برای تخصیص کانال دینامیک (پویا) در شبکه های سلولی موب

اختصاصی از سورنا فایل تحقیق درباره آنالیز عملکرد حداقل احتمال بلوکه شدن مکالمه برای تخصیص کانال دینامیک (پویا) در شبکه های سلولی موب دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

«آنالیز عملکرد حداقل احتمال بلوکه شدن مکالمه برای تخصیص کانال دینامیک (پویا) در شبکه های سلولی موبایل »

چکیده : در این مقاله ،مسئله اختصاص کانال پویا (DCA) در شبکه سلولی مورد بحث و بررسی قرار می گیرد. ما نتایجی را درباره آن ترسیم می کنیم که بهبود عملکرد سیستم بوسیله DCA اینست که DCA ، کارکرد و کارآمدی خط اصلی را افزایش می دهد، اما روش ساده و مفید را برای محاسبه حد پایین احتمال بلوکه شدن مکالمه DCA توسعه می دهد، با استفاده از این روش ،می توانیم عملکرد اختصاص کانال ثابت (FCA) را با هر نوع طرحهای DCA به سادگی و بهتر ، مورد مقایسه قرار دهیم.

ما همچنین عملکرد DCA را در موارد مختلف مورد بحث و بررسی قرار خواهیم داد.

کلمات کلیدی: اختصاص کانال ثابت ،اختصاص کانال پویا، نظریه خط اصلی ، ارتباط سلولی موبایل.

مقدمه

با پیشرفت فناوری ارتباطی ،ارتباط پرسنل بسرعت رشد می کند و شبکه های ارتباط جهانی نیز تحت تحقیقات فعالی قرار می گیرند. در آینده ، سیستم های ارتباط جهانی ،ثابت متحرک می تواند با همدیگر در هر زمانی و جایی و در هر شرایطی ارتباط برقرار نماید،آنها می توانند اطلاعات را بوسیله این نسل از سیستم های جدید ارتباط پرسنل، مبادله نمایند.

سیستم های متحرک ترن MTS ،اغلب برای پوشش حوزه پرتردد مثل شهرهای بزرگ به کار می روند ، جائیکه ساختارهای سلولی کوچک و بزرگ نیز اغلب به کار گرفته می شوند. خصوصاً در ساختمانی بزرگ ، ساختار میکروسلولی سه بعدی اغلب به کار خواهند رفت کارایی استفاده از منابع فرکانس (کانال در پوشش معینی، با نسبت استفاده مجدد از کانال د رسلولهای معین، مشخص می شود. این مقاله به بررسی طرح اختصاص منابع کانال رادیویی در شبکه های سلول متحرک (موبایل ) زمینی ، می پردازد. در اینجا،بطور کلی به منابع کانال رادیویی برای CDMA,TDMA,FDMA بدون ملاحظه خواص هر یک از کانال های فیزیکی خواهیم پرداخت.

طرحهای اختصاص کانال ،نقش مهمی را در سیستم های ارتباطی موبایل برای ایجاد ثابت و پایداری وکارآمدی شبکه ایفا می کنند. هدف روش اختصاص کانال پویا DCA ارائه و ایجاد امکان استفاده از شبکه های موبایل در شرایط منابع محدود کانال و بار تردد خاص شبکه می باشد. با استفاده از DCA ، کارایی کانال و کیفیت خدمات می تواند بهبود یابد. DCA نیز می تواند توانایی سازگاری برای تغییرات ناگهانی بار تردد را ارائه دهد. در سیستم موبایل سلولی منابع کانال محدود باند محدود رادیویی است که به سیستم موبایل اختصاص دارد. در شبکه های مورد بحث در تحقیقات باند رادیویی به چند کانال تقسیم می شود. این کانالها به تصدیق کنندگان آن برطبق تقاضای مکالمه شان اختصاص می یابد . قطعاً ،تقاضای مکالمه که بوسیله تایید کننده خاص انجام می شود کنار گذاشته می شود،اگر کانالهای سالم در طرح منابع کانال موجود نباشد . یک راهبرد DCA که دارای عملکرد مطلوبی است می تواند ،احتمال این کنار گذاشتن را برای کاهش احتمال بلوکه شدن کاهش دهد.

جدای از محدودیت منابع کانال در سیستم های موبایل تداخل کانال نیز ، راهبرد اختصاص کانال را محدود می کند، همان کانال نمی تواند ،در این سلولها مجدداً به کار گرفته شود که دارای خوشه تداخل بین کانالی می باشد و در غیر اینصورت ،ارتباط نمی تواند بعلت تداخل نامطلوب صورت گیرد.

در تحقیقات ، الگوریتم های اختصاص کانال بطور وسیعی به کار برده می شوند و چندین نوع الگوریتم DCA مطرح شده اند. این نوع الگوریتم های DCA برای عملکردشان در فرضیات خاص با همدیگر مقایسه می شوند. به هر حال ، همانطوریکه می دانیم به هر الگوریتم DCA نمی تواند ظرفیت تردد سیستم را بهبود بخشد. علاقه زیادی به محدودیت بهبود عملکرد بوسیله الگوریتم DCA و شرایط تحت آن وجود دارد که الگوریتم DCA بزرگترین نقش را ایفا می کند. گفته می شود که عملکرد DCA در شرایط مختلف کانال ،بار مختلف تردد و مدل مختلف سلولی، متفاوت است ما نیازی به توسعه روش برای سنجش عملکرد هر نوع الگوریتم DCA داریم.

در این مقاله ،این مشکلات رابررسی خواهیم کرد و سپس روش ساده ای را برای محاسبه حد پایین احتمال بلوکه شدن مکالمه درسیستم سلولی با استفاده از الگوریتم DCA ارائه می دهیم. با این روش ،می توانیم عملکرد هر الگوریتم DCA را در همان مدل سلولی مورد مقایسه قرار دهیم.

در بخش دوم این مقاله ،آنالیز مدل، توصیف و مدل ارائه خواهد شد. در بخش سوم، روش ساده ای را برای محاسبه حد پایین احتمال بلوکه شدن مکالمه با استفاده از الگوریتم DCA توسعه خواهیم داد. در بخش آخر نتایج عددی و نتیجه گیری درباره انتخاب الگوریتم DCA در طرح سیستم عملی ارائه می شود.

« 2 - فرضیه و مدل ریاضی »

در این مقاله ، مباحثی درباره فرضیات ذیل ارائه می شود:


دانلود با لینک مستقیم


تحقیق درباره آنالیز عملکرد حداقل احتمال بلوکه شدن مکالمه برای تخصیص کانال دینامیک (پویا) در شبکه های سلولی موب

احتمال

اختصاصی از سورنا فایل احتمال دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 23

 

فهرست مطالب

عنوان صفحه

تاریخچه 1

احتمال 4

احتمال نظری 5

احتمال تجربی 5

احتمال ذهنی 6

محاسبه احتمال 6

جمع حوادث سازگار 7

ضرب حوادث مستقل 7

ضرب حوادث وابسته 8

اصول اساسی قانون ضرب 9

جایگشت (تبدیل) 11

ترتیب 13

قاعده ترتیب 14

ترکیب 15

ویژگیهای ترکیب 18

توصیف احتمال یک حادثه 18

خلاصه 19

 

تاریخچه

هیچ کس نمی داند که اعتقاد به شانس برای نخستین بار در چه زمانی و مکانی مطرح شد. در هر حال این امر در دوران ماقبل تاریخ ریشه دارد. با این حال، اسناد کافی نشان می دهد که انسانهای اولیه برای توجیه حوادث تصادفی به وسایلی متوسط می شده اند. برای مثال در آسیای صغیر در آیین پیشگویی مرسوم بود که پنج قاپ را بیندازند. ترتیب ممکن از قاپها، نام خدایی را به همراه داشت (مارکس و لارسن، 1990). برای مثال چنانچه ترتیب (4، 4، 3، 1) به دست می آمد (قاپ شش وجه دارد و به هر وجه آن یک شماره اختصاص داده می شد). گفته می شد زئوس منجی آمده است و چنین ترتیبی پنشانی از قوت قلب تلقی می شد و تفسیر آن این بود که آنچه در سر داری،‌ بی مهابا به انجام برسان. یا اگر ترتیب 4، 4، 4، 6، 6 ظاهر می شد معنای آن این بود که در خانه ات بمان و به هیچ کجا مرو.

به تدریج پس از گذشت هزاران سال، تاس جانشین قاپ شد. در مقبره های مصر که 2000 سال پیش از میلاد مسیح ساخته شده اند، تاسهای سفالی به دست آمده اند. متداول ترین تاس بازی آن زمان هازاد نام داشت. هازاد توسط سربازانی که از جنگهای صلیبی بازگشتند، به اروپا آورده شد. ورق برای نخستین بار در قرن چهاردهم رواج پیدا کرد.

مورخان در مورد این که اعتقاد به احتمال شروع نامشخصی دارد اتفاق نظر دارند. شاید دلیل این امر ناسازگاری آن با عامل بارز موثر در تحول فرهنگ غرب، یعنی فلسفه یونان و خداشناسی مسیحیان در صدر مسیحیت باشد. یونانیان به عقیده شانس اکتفا می کدرند در صورتی که مسیحیان چنین اعتقادی نداشتند. در قرن شانزده احتمال سر از خاک برداشت. سازماندهی و احیا آن توسط جرولامو کاردان انجام گرفت. علاقه کاردان که ظاهراً تحصیلاتی در رشته پزشکی داشت، به قوانین احتمال، ناشی از میل وافر او به قمار بود. او در صدد دستیابی به یک الگوی ریاضی بود تا با کک آن بتواند حوادث اتفاقی را تشریح کند. آنچه که او سرانجام تدوین کرد تعریف کلاسیک احتمال است. به این صورت که در صورتی که تعداد نتایج ممکن حادثه ای که همه دارای احتمال یکسان هستند را با n نشان دهیم و چنانچه m نتیجه از n نتیجه ممکن اتفاق بیفتد، احتمال آن حادثه مساوی است. برای مثال در صورتی که تاسی بدون اریبی باشد،‌ 6 ممکن (6= n) خواهد شد (نتایج 5 و 6) و احتمال 5 یا بزرگتر از آن مساوی یا خواهد بود.

کاردان ابتدایی ترین اصول احتمال را مطرح کرده بود. الگویی که او کشف کرده بود ممکن است پیش پا افتاده به نظر برسد اما حاکی از گامی عظیم بود. بسیاری از مورخان نقطه آغاز علم احتمال را سال 1654 می دانند. در پاریس قمار باز ثروتمندی به نام شوالیه دمور از چند ریاضی دان برجسته از قبیل بلز پاسکال سوالهایی پرسید که معروفترین آنها درباره نقاط بود.

دو نفر، الف و ب، موافقت می کنند که بدون تقلب مجموعه ای بازی را تا زمانی که یک نفر از آنها شش دست برنده شود، ادامه دهند. هر کدام از این دو نفر بر سر مبلغ یکسانی شرط بندی می کنند با این قصد که برنده کل، تمام مبلغ شرط بندی (بانک) را برنده شود. حال فرض کنید به هر دلیلی این بازیها قبل از موقع پایان پذیرد، مثلا در نقطه یا مرحله ای که فرد الف 5 دست و فرد ب 3 دست برنده شده باشد. در این مرحله یا نقطه از بازی، پول شرط بندی شده چطور باید تقسیم شود؟ پاسخ صحیح این است که فرد الف باید کل مبلغ شرط بندی شده را دریافت کند. چرا مبلغ شرط بندی شده باید به این ترتیب تقسیم شود؟

با طرح سوالهای دمور، حس کنجکاوی پاسکال برانگیخته شد و نظر خود را با پیر فرما، کارمند دولت و احتمالاً برجسته ترین ریاضی دان اروپا، در میان گذاشت. فرما با روی گشاده از نظر پاسکال استقبال کرد و از همان موقع بود که نظریه معروف تناظر پاسکال- فرما نه تنها برای حل مسائل نقاط مطرح شد بلکه شالوده ای برای کارهای اساسی تر گردید.خبر آنچه که فرما و پاسکال یافته بود انتشار یافت و دیگران هم به مطالعه این مساله پرداختند. معروفترین آنها دانشمند و ریاضی دان هلندی کریستیان های جنز است که نام او بیشتر به خاطر کارهایش در نورشناسی و نجوم در خاطرها مانده است. توجه های جنز در همان اوایل کارش به مسائل نقاط جلب شد. وی در سال 1657 کتاب محاسبات در بازیهای احتمالی را منتشر ساخت که قریب 50 سال به عنوان کتاب درسی درباره نظریه احتمال تدریس می شد (لارسن و مارکس، 1990). طرفداران های جنز او را بنیانگذار احتمالات می دانند.


دانلود با لینک مستقیم


احتمال

دانلود پاورپوینت فصل 6 مفهوم احتمال ..

اختصاصی از سورنا فایل دانلود پاورپوینت فصل 6 مفهوم احتمال .. دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت فصل 6 مفهوم احتمال ..


دانلود پاورپوینت فصل 6  مفهوم احتمال ..

پاورپوینت فصل 6  مفهوم احتمال 

فرمت فایل: پاورپوینت

تعداد اسلاید: 15

 

 

 

 

بخشی از متن

در زندگی روز مره از کلماتی مانند شاید ،ممکن است «احتمالا» و... استفاده شود.

علم احتمال اولین بار از بازی های شانس به وجود آمد .

در بازی های شانس ،برد و باخت اهمیت فراوان دارد و حدس زدن مطرح می شود.

واژه احتمال

واژه احتمال را در صحبت های روز مره ی اشخاص زیاد شنیده اید .به طور مثال یکی از دوستانتان به شما می گوید: به احتمال% 99 می آیم . چه قدر منتظر او هستید ؟حتما خیلی زیاد

ویا به این جمله اعتقاد دارید هر چه دانش آموز بیشتر درس بخواند احتمال قبول شدن او بیش تر است. یعنی احتمال کم و زیاد می شود ، پس احتمال را می توان اندازه گرفت.


دانلود با لینک مستقیم


دانلود پاورپوینت فصل 6 مفهوم احتمال ..

احتمال

اختصاصی از سورنا فایل احتمال دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 23

 

فهرست مطالب

عنوان صفحه

تاریخچه 1

احتمال 4

احتمال نظری 5

احتمال تجربی 5

احتمال ذهنی 6

محاسبه احتمال 6

جمع حوادث سازگار 7

ضرب حوادث مستقل 7

ضرب حوادث وابسته 8

اصول اساسی قانون ضرب 9

جایگشت (تبدیل) 11

ترتیب 13

قاعده ترتیب 14

ترکیب 15

ویژگیهای ترکیب 18

توصیف احتمال یک حادثه 18

خلاصه 19

 

تاریخچه

هیچ کس نمی داند که اعتقاد به شانس برای نخستین بار در چه زمانی و مکانی مطرح شد. در هر حال این امر در دوران ماقبل تاریخ ریشه دارد. با این حال، اسناد کافی نشان می دهد که انسانهای اولیه برای توجیه حوادث تصادفی به وسایلی متوسط می شده اند. برای مثال در آسیای صغیر در آیین پیشگویی مرسوم بود که پنج قاپ را بیندازند. ترتیب ممکن از قاپها، نام خدایی را به همراه داشت (مارکس و لارسن، 1990). برای مثال چنانچه ترتیب (4، 4، 3، 1) به دست می آمد (قاپ شش وجه دارد و به هر وجه آن یک شماره اختصاص داده می شد). گفته می شد زئوس منجی آمده است و چنین ترتیبی پنشانی از قوت قلب تلقی می شد و تفسیر آن این بود که آنچه در سر داری،‌ بی مهابا به انجام برسان. یا اگر ترتیب 4، 4، 4، 6، 6 ظاهر می شد معنای آن این بود که در خانه ات بمان و به هیچ کجا مرو.

به تدریج پس از گذشت هزاران سال، تاس جانشین قاپ شد. در مقبره های مصر که 2000 سال پیش از میلاد مسیح ساخته شده اند، تاسهای سفالی به دست آمده اند. متداول ترین تاس بازی آن زمان هازاد نام داشت. هازاد توسط سربازانی که از جنگهای صلیبی بازگشتند، به اروپا آورده شد. ورق برای نخستین بار در قرن چهاردهم رواج پیدا کرد.

مورخان در مورد این که اعتقاد به احتمال شروع نامشخصی دارد اتفاق نظر دارند. شاید دلیل این امر ناسازگاری آن با عامل بارز موثر در تحول فرهنگ غرب، یعنی فلسفه یونان و خداشناسی مسیحیان در صدر مسیحیت باشد. یونانیان به عقیده شانس اکتفا می کدرند در صورتی که مسیحیان چنین اعتقادی نداشتند. در قرن شانزده احتمال سر از خاک برداشت. سازماندهی و احیا آن توسط جرولامو کاردان انجام گرفت. علاقه کاردان که ظاهراً تحصیلاتی در رشته پزشکی داشت، به قوانین احتمال، ناشی از میل وافر او به قمار بود. او در صدد دستیابی به یک الگوی ریاضی بود تا با کک آن بتواند حوادث اتفاقی را تشریح کند. آنچه که او سرانجام تدوین کرد تعریف کلاسیک احتمال است. به این صورت که در صورتی که تعداد نتایج ممکن حادثه ای که همه دارای احتمال یکسان هستند را با n نشان دهیم و چنانچه m نتیجه از n نتیجه ممکن اتفاق بیفتد، احتمال آن حادثه مساوی است. برای مثال در صورتی که تاسی بدون اریبی باشد،‌ 6 ممکن (6= n) خواهد شد (نتایج 5 و 6) و احتمال 5 یا بزرگتر از آن مساوی یا خواهد بود.

کاردان ابتدایی ترین اصول احتمال را مطرح کرده بود. الگویی که او کشف کرده بود ممکن است پیش پا افتاده به نظر برسد اما حاکی از گامی عظیم بود. بسیاری از مورخان نقطه آغاز علم احتمال را سال 1654 می دانند. در پاریس قمار باز ثروتمندی به نام شوالیه دمور از چند ریاضی دان برجسته از قبیل بلز پاسکال سوالهایی پرسید که معروفترین آنها درباره نقاط بود.

دو نفر، الف و ب، موافقت می کنند که بدون تقلب مجموعه ای بازی را تا زمانی که یک نفر از آنها شش دست برنده شود، ادامه دهند. هر کدام از این دو نفر بر سر مبلغ یکسانی شرط بندی می کنند با این قصد که برنده کل، تمام مبلغ شرط بندی (بانک) را برنده شود. حال فرض کنید به هر دلیلی این بازیها قبل از موقع پایان پذیرد، مثلا در نقطه یا مرحله ای که فرد الف 5 دست و فرد ب 3 دست برنده شده باشد. در این مرحله یا نقطه از بازی، پول شرط بندی شده چطور باید تقسیم شود؟ پاسخ صحیح این است که فرد الف باید کل مبلغ شرط بندی شده را دریافت کند. چرا مبلغ شرط بندی شده باید به این ترتیب تقسیم شود؟

با طرح سوالهای دمور، حس کنجکاوی پاسکال برانگیخته شد و نظر خود را با پیر فرما، کارمند دولت و احتمالاً برجسته ترین ریاضی دان اروپا، در میان گذاشت. فرما با روی گشاده از نظر پاسکال استقبال کرد و از همان موقع بود که نظریه معروف تناظر پاسکال- فرما نه تنها برای حل مسائل نقاط مطرح شد بلکه شالوده ای برای کارهای اساسی تر گردید.خبر آنچه که فرما و پاسکال یافته بود انتشار یافت و دیگران هم به مطالعه این مساله پرداختند. معروفترین آنها دانشمند و ریاضی دان هلندی کریستیان های جنز است که نام او بیشتر به خاطر کارهایش در نورشناسی و نجوم در خاطرها مانده است. توجه های جنز در همان اوایل کارش به مسائل نقاط جلب شد. وی در سال 1657 کتاب محاسبات در بازیهای احتمالی را منتشر ساخت که قریب 50 سال به عنوان کتاب درسی درباره نظریه احتمال تدریس می شد (لارسن و مارکس، 1990). طرفداران های جنز او را بنیانگذار احتمالات می دانند.


دانلود با لینک مستقیم


احتمال

دانلود مقاله درباره آمار و احتمال

اختصاصی از سورنا فایل دانلود مقاله درباره آمار و احتمال دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله درباره آمار و احتمال


دانلود مقاله درباره آمار و احتمال

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 19

 

تخمین پارامترهای احتمال:

با توجه به بحث انجام شده دردرس 3 ، پایه قانون PFS شامل تئوری فازی است که نتایج چندگانه ای دارد . هر نتیجه به یک پارامتراحتمال مربوط می شود . این درس به احتمال تخمین پارامترها درPFS مربوط می شود . در این درس فرض بر این است که هم مقدمه وهم نتیجه mfsبه یک اندازه تعیین کننده هستند واحتیاجی به بهینه سازی بیشتر نمی باشد . طبقه بندی مسئله ها وتخمین mfs دردرس 5 ملاحظه می شود. دردرس16و18و34 پارامترهای احتمال به وسیله تئوری فازی تخمین زده می شوندو برای تخمین احتمالات شرطی ازفرمولهای اماری استفاده می شود (همانطور که دردرس 35 می بینیم ) این روش برای تخمین پارامترهای تخمین است وهمچنین دریاداوری نظریه ها به روش احنمال شرطی اشاره می کند . دراین درس نشان خواهیم دادکه روش احتمال شرطی کلا نتیجه بهینه ودقت مورد تاییدی دردوره های PFS نمی دهد . متناوبا هدف این است که ازحداکثر احتمال درست نمایی معیار ML برای تخمین پارامترهای احتمالی PFS استفاده شود . درادامه این درس الگوهایی وجود دارد . درقسمت (1-4 ) روش احتمال شرطی برای تخمین پارامترهای احتمال در PFSمورد بحث قرار می گیرد. همچنین نشان خواهیم داد هم مسئله ها ی طبقه بندی وهم مسئله های برگشتی که به وسیله پارامترهای احتمال تخمین زده می شوند روش احتمال شرطی غیرواقعی ، غیرواقعی مجانبی ، و ناهماهنگ می باشند که معیارهای ML را پاسخگو نمی باشند . در قسمت (2-4) برای تخمین پارامترهای احتمال در PFS معرفی یک روش جدید هدف می باشد . این روش بر پایه معیار ML می باشد . همچنین در قسمت 2-4نمونه هایی ازبهینه سازی مسئله که نتیجه معیار MLمی باشد مورد بررسی قرار می گیرد . توجه کنید که درتوصیف ازمایشها دردرس5 روش احتمال شرطی وروش ML به صورت تجربی به وسیله ارتباط ان روشها با مسئله های عددی طبقه بندی شده با هم مقایسه می شوند.

1-4 : روش احتمال شرطی

اجازه دهید(X1,Y1) , ... Xn,Yn) ,) نشان دهنده نمونه های تصادفی از جامعه n باشند این نمونه ها برای تخمین Рr(C|A) استفاده می شوند . احتمال شرطی رخداد C به شرط رخدادA به وسیله فرمول اماری زیر محاسبه می شود :

4)

که وظایف مشخصه های XA ,Xc نشان داده می شوند به وسیله :

(2. 4)

(3. 4)

حالافرض کنید به جای پدیده های معمولی Aو C پدیده های فازی جایگزین شوند .

این به این معناست که به وسیله mfs پدیده های A,C به µA وμC تعریف شوندو

به جای XΑ،Xc در معادله 4.1 جایگزین شوند . در نتیجه خواهیم داشت :

(4.4)

این فرمول پایه تعریف احتمال رخداد در پدیده فازی می باشد ( درس 37 ) .

مشتق اول فرمول 4.4 درسهای 35و36 را پدید می آورد .

نتیجه فرمول 4.4 در تخمین پارامترهای شرطی درPFS استفاده می شود . این دیدگاه دردرسهای 16و18و34 دنبال می شود که به روشهای احتمال شرطی در این تز اشاره

می کند .

فرض کنید مجموعه اطلاعاتی شاملn نمونه به صورت ( (i=1,2, ...,n) ( Xi,Yi

برای تخمین پارامترهای احتمال در دسترس باشد همچنین فرض کنید که هم مقدمه وهم نتیجه mfs درسیستم تعیین شده است ونیاز به بهینه سازی بیشتر نمی باشد یعنی فقط پارامترهای احتمال درتخمین باقی بمانند . به نظر منطقی می آید که پارامترهای Pj,k واقعی رابرای تخمین احتمال شرطی پدیده فازی Ck به شرط رخداد پدیده فازی Aj قرار دهیم . اگرچه ورودی X به تعریف بیشتر احتیاج ندارد اما برای نشان دادن غیر عادی بودن محاسبات mfµAj وmfµ¯Aj باید ازفرمول زیراستفاده شود :

(4.5)

بنابراین Pj,k واقعی است و برای تخمین احتمال شرطی پدیده فازی Ck ونشان دادن غیر عادی بودن پدیده فازی Aj باید ازآن استفاده شود .

توجه داشته باشید که PFSs برای نمونه های برگشتی یک قانون پایه دارد که فقط با همان قانون که در پارامترهای شرطی Pj,k استفاده می شود ودرفرمول 4.5 نشان داده شده هیستوگرامهای فازی مورد بحث دردرس 2 را معادل سازی می کند .

درPFS برای نمونه های طبقه بندی درهرطبقه Ck به صورت یک خروجی جدید نشان داده می شود پس فرمول 4.5 به صورت زیر هم نوشته می شود :

(4.6)

عملکرد مشخصه XCk بوسیله فرمول زیر نشان داده می شود :

(4.7)

درتعریف این قسمت ،احتمالات آماری پارامترها تخمین زده می شوند . به PFSs درنمونه های طبقه بندی در تجزیه وتحلیل فرمولهای (4.5) و(4.6) در قسمت (4.1.1) توجه می شود . همچنین در قسمت (4.1.2) درنمونه های برگشتی PFSs بررسی می شود .


دانلود با لینک مستقیم


دانلود مقاله درباره آمار و احتمال