سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پاورپوینت سنتز جواهرات- 49 اسلاید

اختصاصی از سورنا فایل دانلود پاورپوینت سنتز جواهرات- 49 اسلاید دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت سنتز جواهرات- 49 اسلاید


دانلود پاورپوینت سنتز جواهرات- 49 اسلاید

 

 

 

 

 

 

 

 

در زمانهای بسیار دور برخی از مواد به واسطه سلیقه شخصی، مد، نادر بودن در محیط، پندارهای خرافی و فرهنگ و خواص فیزیکی ویژه و ......... به عنوان گوهر مورد توجه انسانها بوده‌اند. در طول تاریخ، مسایل مختلفی بر روی ارزش جواهرات تأثیر گذاشته که می‌توان به موقعیتهای سیاسی و پیشرفت علم بشر اشاره نمود چنانچه آلومینیوم به دلیل نایاب بودن، در صده‌های قبل به عنوان جواهر مصرف می‌شد، در صورتیکه امروزه پیشرفت تکنولوژی و کشف ذخایر بزرگ این کانی، ارزش آن را در حد یک فلز صنعتی پایین آورده است.
اما چیزی که همواره ثابت بوده، افزایش طرفداران جواهر و به تیع آن ارزش گوهر است که بشر را به فکر ساخت انواع مصنوعی آنها انداخت، به طوریکه مصریان قرنها قبل به ساختن جواهرات بدلی از شیشه‌ یا لعاب‌های رنگین می‌پرداختند.

 

§سعی در ساخت مواد مصنوعی با کیفیت مطلوب، سرانجام سبب شد که شرکت جنرال الکتریک در فوریه ۱۹۵۵ اولین الماس مصنوعی را که البته فاقد ارزش جواهری بود بسازد. رشد این صنعت در سالهای اخیر منجربه تولید کانیهای مصنوعی شده که تنها از طریق بررسی‌های دقیق فیزیکوشیمیایی از انواع طبیعی قابل شناسایی هستند. البته باید توجه نمود که سنگهای مصنوعی و بدلی را جواهر نمی‌توان نامید.
در حال حاضر سیستم‌های مشخصی جهت تعیین ارزش جواهرات وجود دارد. خواص نوری و چگونگی تراش دو عامل مهم در این امر به شمار می‌روند. خواص نوری سبب ایجاد رنگ، جلا، لومینانس و بازی رنگ در نگین می‌شوند.
تراش یک بلور تابع شکل و مشخصات ظاهری یک کانی است و به عنوان مثال معمولاً کانیهای کم‌رنگ را با قطر بیشتری می‌تراشند تا رنگ مطلوبتری بدست ‌ آید
§
 
§کانى ها ،بلورها و سنگ هاى گرانبهایى که به طور مصنوعى ،با هر روشى توسط بشر تولید شوند ،تحت عنوان نمونه سنتتیک جواهرات طبقه بندى مى شوند .خواص فیزیکى و شیمیایى و نیز ساختار بلورى این نوع کانى ها و سنگ ها ى گرانبها ،کاملا" با نمونه هاى طبیعى آنها مرتبط مى باشد .سه روش عمده در سنتز کانى ها و سنگ ها ى گرانبها عبارتند از :
§الف . روش ورنوئیل(Flame Fusion Process Verneuil )
§ب. روش فلاکس(Flux Fusion Process )
§ج.روش هیدروترمال (Hydrothermal Process )
§د.روش CVD
§دیگر روش ها عبارتند از :
§- روش رشد ژل (Gel Growth Process)
§- روش چرالاسکى (Czochralski Process)
§
§
 

در سال 1960 اولین بلور زمرد بوسیله این روش توسط  Lechleitner تولید

 گردید.

این روش به آنچه در طبیعت می گذرد بسیار نزدیک است.

طی این فرایند یک اتوکلاو فولادی که کریستال ها

در آن در دما و فشار بالا رشد میکنند.

یک صفحه کریستالی به عنوان بنیان از یک ماده مطلوب در قسمت بالایی مخزن

 آویزان می گردد و پودر ماده مورد نظر در قسمت تحتانی قرار می گیرد و مخزن تا

 اندازه ای از آب پر می شود.

دمای به کار در قسمت تحتانی مواد را در آب  حل می کند و تشکیل یک محلول فوق اشباع را می دهد که به سمت بالا حرکت می کند تا جایی که مواد قادر به نهشت بر روی صفحه کریستالی شوند و تشکیل بلور های درشت را می دهند

 

§بسیارى از عناصر که در آنالیز ترکیب کلى کانى ها گزارش مى شوند ،حاصل بازتاب وجود تداخل هاى میکروسکوپى ،از فازهاى دیگر مى باشند .این عناصر ،ناخالصى بوده و بخش تفکیک ناپذیر کانى نمى باشند .بعضى از عناصر کمیاب ممکن است در مکان ها ى شبکه اى (Lattice sites) قرار داشته باشند ؛اما مقدار قابل توجهى از آنها ممکن است در مکان هاى دیگر قرار بگیرند که به عنوان ناخالصى شناخته مى شوند
 
§در شرایط تشکیل الماس طبیعی نیتروژن وجود ندارد. برای حل این مشکل الماس سازان به دنبال یک جذب کننده نیتروژن گشتند.
§آنها با قرار دادن Al به دور گرافیت این مشکل را رفع کردند. این بار برای الماس فروشان طبیعی سخت شده بود.
§این بار الماس فروشان دست به کار شدند تا فرقی بین این دو الماس پیدا کنند.تا اینکه کشف کردند که الماس های مصنوعی خاصیت فلورسانس دارند در حالی که الماس های طبیعی این خاصیت را ندارند.
§الماس سازان دوباره به دنبال راه حل گشتند و با بررسی دقیق و بهبود روش کار و صرف زمان زیادتر تا حد زیادی این مشکل را مرتفع ساختند.
§
 
 

دانلود با لینک مستقیم


دانلود پاورپوینت سنتز جواهرات- 49 اسلاید

دانلود تحقیق سنتز آسپرین 7 ص

اختصاصی از سورنا فایل دانلود تحقیق سنتز آسپرین 7 ص دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق سنتز آسپرین 7 ص


دانلود تحقیق سنتز آسپرین 7 ص

دسته بندی : علوم پزشکی _ پزشکی ،

فرمت فایل:  Image result for word ( قابلیت ویرایش و آماده چاپ

فروشگاه کتاب : مرجع فایل 

 


 قسمتی از محتوای متن ...

تعداد صفحات : 7 صفحه

تاریخچه وقتى نخستین بار در سال 1763 از پودر پوست درخت بید براى تسکین بیمارى که از تب رنج مى برد استفاده کردند کسى فکرش را نمى کرد که سال ها بعد دارویى را از آن کشف کنند که جان میلیون ها نفر را از خطر مرگ نجات دهد.
در آن سال یک کشیش انگلیسی به نام ادوارد استون مقاله‌ای در جلسه سلطنتی انگلستان ارائه دادکه در آن استفاده از برگ درخت بید را حتی در درمان مالاریا نیز موثر معرفی کرده بود.
100 سال پس از مقاله استون، یک پزشک اسکاتلندی دریافت که با استفاده از ماده‌ای که از برگ درخت بید بدست می‌آید، عوارض ناشی از رماتیسم به طرز معجزه آسایی کاهش می‌یابد.
آسپیرین را چه کسی کشف کرد؟
فردریک بایر (Fredrich Bayer) در سال 1825 بدنیا آمد.

پدر او یک نساج و رنگرز پارچه بود و طبق عادت آن زمان وی در ابتدا شغل و حرفه پدر را برای کار انتخاب کرد و پس از مدتی فعالیت با پدر، در سال 1848 تشکیلاتی مشابه برای خود راه اندازی کرد و در آن حرفه بسیار هم موفق شد.
تا قبل از 1856 برای رنگرزی از مواد رنگی طبیعی استفاده می شد اما با کشف و صنعتی شدن ساخت رنگهای حاصل از مواد نفتی، بایر که پتانسیل موجود در این کشف را بخوبی احساس کرده بود با کمک شخصی بنام فردریک وسکوت (Friedrich Weskott) کمپانی Bayer را راه اندازی کرد.
بایر در ماه می سال 1880 در گذشت و تا آن زمان کمپانی هنوز در فعالیت رنگرزی مشغول بود، اما شرکت تصمیم گرفت با استخدام تعدادی شیمیدان نوآوری هایی در این صنعت بوجود آورد و این اتفاق هم افتاد اما نه در صنعت رنگرزی.
هنگامی که فلیکس هوفمن (Felix Hoffmann) در حال انجام آزمایش با یکسری از ضایعات رنگی بود تا شاید بتواند دارویی برای درمان درد ناشی از بیماری پدرش بدست آورد توانست به پودری دسترسی پیدا کند که امروزه شما آنرا به نام آسپرین می شناسید.
هوفمن آسپرین را کشف نکرد آسپرین چهل سال قبل توسط یک شیمیدان فرانسوی کشف شده بود، این شیمیدان بخوبی می دانست که پودر اسید استیل سالیسیلیک (acetylsalicylic acid) دارای خاصیت شفا بخشی بسیار می باشد.
در واقع بیش از 3500 سال بود که بشر این پودر را می شناخت چرا که در سال 1800 یک باستان شناس آلمانی که در مصر تحقیق می کرد، با ترجمه یکی از پاپیروس های مصری متوجه شد که بیش از 877 نوع مواد دارویی برای مصارف مختلف در مصر باستان شناخته شده بود که یکی از آنها همین پودر اسید بود که برای برطرف کردن درد از آن استفاده می شد.
در برخی از شواهد و نوشته های دیگری که در یونان بدست آمده است نیز مشخص شده که بشر حدود 400 سال پیش از میلاد از شیره پوست درخت بید برای درمان تب و درد استفاده می کرده است.
همچنین آنها هنگام زایمان زنان از این ماده برای کاهش درد استفاده می کردند.

  متن بالا فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.شما بعد از پرداخت آنلاین فایل را فورا دانلود نمایید

بعد از پرداخت ، لینک دانلود را دریافت می کنید و ۱ لینک هم برای ایمیل شما به صورت اتوماتیک ارسال خواهد شد.

( برای پیگیری مراحل پشتیبانی حتما ایمیل یا شماره خود را به صورت صحیح وارد نمایید )

«پشتیبانی فایل به شما این امکان را فراهم میکند تا فایل خود را با خیال راحت و آسوده دریافت نمایید »


دانلود با لینک مستقیم


دانلود تحقیق سنتز آسپرین 7 ص

طرح پژوهشی سنتز ترکیبات لیمونی 15 ص

اختصاصی از سورنا فایل طرح پژوهشی سنتز ترکیبات لیمونی 15 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 23

 

بسمه تعالی

دانشگاه آزاد اسلامی

واحد کرج

«گزارش نهایی طرح پژوهشی»

سنتز ترکیبات لیمونن (و بورنئول) از روغن تربانتین

مجری طرح :

عباس احمدی

1383-1382

گیاهان معطر عموماً به دسته ای از گیاهان اطلاق می شود که حاوی ترکیبات معطر و یا بعبارت دیگر اسانس هستند . این قبیل گیاهان با تنوع فراوان در کشورمان گسترده شده اند . امروزه استفاده از روغنهای اسانس در صنایع بهداشتی ، آرایشی ، غذایی و داروئی به قدری وسیع است که در بسیاری از کشورها مقادیر زیادی از این اسانس ها و یا ترکیبات تشکیل دهند آنها بصورت سنتزی تهیه می شوند .

انسان های طبیعی بدلیل عدم خطرات ناشی از آلودگی با مواد شیمیایی و نیز بو و اثر ویژه که در ترکیبات سنتزی براحتی قابل دسترسی نیست ، بسیار قابل توجه می باشند . در کشور ما با وجود تنوع آب و هوایی و شرایط مناسب کاشت و پرورش گیاهان معطر ، اسانس های استخراج شده از این گیاهان نه تنها می توانند نیاز داخلی را رفع نمایند ، بلکه می توانند جایگاه مهمی را در صادرات کشور داشته باشند . در هر حال توضیح و تبیین و موارد کاربرد یک اسانس در درجه اول به شناخت علمی آن مربوط می شود .

در واقع ترکیبات معطر گیاه یکی از پدیده های جالب متابویسم گیاه است و بیشترین میزان رایحه را می توان از طریق گلهای تازه احساس نمود که از حضور مقادیر ناچیزی از روغنهای اسانسی در گلبرگها ناشی شده است .

روغنهای اسانسی گاهی در شکل آزاد ، مانند اسانس موجود در گل رز و اسطوقدوس و گاه بصورت گلوکوزید است که تحت شرایط مطلوب و در حضور آنزیم و با عمل تخمیر به شکل آزاد در می آید (مانند اسانس یاس) . البته روغنهای اسانسی در سایر اندامهای گیاه نیز وجود دارند ، نظیر گل ، برگ ، پوست تنه گیاه و ...

روغنهای اسانسی از دیدگاه شیمیایی ، مخلوطهای بسیار پیچیده شامل ترپن ها و سسکوئی ترپن ها و مشتقات اکسیژنه آنها و ترکیبات دیگر هستند .

اکثر ترکیبات تشکیل دهنده اسانس ها ، خواصی دارند که استفاده از آنها را به صورت فرآورده های داروئی ، بهداشتی و غذایی امکانپذیر می سازد و بطور کلی ترکیبات متشکله اسانسها را می توان به سه دسته مهم زیر تقسیم بندی نمود .

1)مونوترپن های اکسیژن دار

2)مونوترپن های بدون اکسیژن

3)سسکوئی ترپن ها

مونوترپن ها می توانند خطی ، یک حلقه ای و یا دو حلقه ای باشند . مونوترپن های اکسیژن نیز می توانند به فرمهای الکلی ، کتونی ، آلدئیدی و غیره باشند .


دانلود با لینک مستقیم


طرح پژوهشی سنتز ترکیبات لیمونی 15 ص

شیف بازها - شیمی فضایی - خواص و کاربرد - توتومری - سنتز و انواع آن

اختصاصی از سورنا فایل شیف بازها - شیمی فضایی - خواص و کاربرد - توتومری - سنتز و انواع آن دانلود با لینک مستقیم و پر سرعت .

شیف بازها - شیمی فضایی - خواص و کاربرد - توتومری - سنتز و انواع آن


 شیف بازها - شیمی فضایی - خواص و کاربرد - توتومری - سنتز و انواع آن

مقدمه

شیف باز­ها و کمپلکس ­های فلزات واسطه ­ی آن‌ها در طی دو قرن مورد مطالعه قرار گرفته است. شیف باز­ها ترکیباتی هستند که دارای ساختاری با فرمول کلی C=NR”′ RRمی­ باشند. در این فرمول  R یک گروه آریل و R” یک آلکیل یا آریل است [1]. روش ­های متفاوتی برای سنتز شیف باز­ها وجود دارد. عمومی­ ترین روش واکنش تراکمی بین یک آمین نوع اول با یک ترکیب کربونیل­دار در حضور کاتالیزور­های اسیدی در شرایط بازروانی است [2]. لازم به ذکر است که در طی فرآیند بازروانی، آب ایجاد شده از سیستم جدا می­گردد. آلدهید­ها، کتون­ ها، آمینو اسید­ها، کاربازید­ها و تیوسمی کاربازید­ها ترکیبات کربونیل­دار استفاده شده است (شکل 1) [3].

 عوامل زیادی روی این واکنش تراکمی تأثیر دارند که می­ توان از pH محلول، اثرات الکترونی و فضایی ترکیب کربونیل و آمین نام برد. تشکیل شیف باز­ها در شرایط بازی شدید سرعت مناسبی ندارد. گروه عاملی شیف باز­ها، C=N بوده و این ترکیبات می­ توانند به_عنوان دهنده ­های دندانه­ دار عمل کنند. اگر یک گروه عاملی مناسب مانند (OH, SH,…) در مجاورت گروه ایمینی وجود داشته باشد، این ترکیبات قادرند به_عنوان لیگاند کی­لیت دهنده عمل کنند و با یون ­های فلزی واکنش دهند. بنابراین می ­توانند بسیاری از واکنش­ های آنزیمی که به وسیله ­ی یون­ های فلزات واسطه کاتالیز می­ شوند نقش بازدارندگی داشته باشند [4].

 شیمی فضایی شیف بازها

پیکربندی شیف باز­های در امتداد محور C-N با زاویه 2φ می­چرخد، در حالی که حلقه ­های آروماتیک بخش­ های آلدهیدی مسطح هستند. شکل 2 نشان می ­دهد که گروه آزومتین و کربن آریل در یک صفحه قرار می­گیرند (φ≈ 0°) [5,6] . ماهیت ساختار غیر مسطح شیف باز­ها با مجموع اثرات الکترونی و فضایی شناخته می ­شود [7]، برای مثال استخلاف­ های الکترون کشنده در بخش ایمینی R2، به خوبی استخلاف­ های آلکیل و آریل R3، مقدار زاویه 2φ را زیاد می­کند [8]. در حالی که اگر 2R یک استخلاف الکترون دهنده باشد این زاویه را.....

فهرست مطالب

                                                                      1- مقدمه. 3

1-2- شیمی فضایی شیف بازها 4

1-3- خواص و کاربردهای اورتوهیدروکسی شیف بازها 5

1-4- توتومری در اورتو هیدروکسی شیف بازها 6

1-5- اثر حلال.. 6

1-6- بازهای شیف... 7

1-6-1- روش سنتز بازهای شیف... 8

1-6-2- انواع بازهای شیف... 10

1-6-2-1- بازهای شیف یک دندانه. 10

1-6-2-2- بازهای شیف دو دندانه. 10

1-6-2-3- بازهای شیف سه دندانه. 11

1-6-2-4- بازهای شیف چهاردندانه. 12

1-6-2-5- بازهای شیف پنج دندانه و شش دندانه. 12

1-6-2-6- بازهای شیف هفتدندانه. 13

1-6-3- بازهای شیف درشت حلقه. 13

1-6-4- لیگاندهای باز شیف متقارن و نامتقارن.. 14

1-6-5- بازهای شیف به عنوان لیگاند در تشکیل کمپلکس.... 15

1-7- معرفی کمپلکسهای باز شیف... 15

1-7-1- کاربرد کمپلکسهای باز شیف... 16

1-7-2- کمپلکسهای باز شیف به عنوان کاتالیزور واکنشهای اکسایشی.. 17

1-7-3- روش های شناسایی لیگاند و کمپلکس های باز شیف... 17

 

فهرست شکل­ها

شکل 1: واکنش کلی تشکیل شیف بازها 4

شکل 2: قرار گرفتن گروه آزومتین و کربن آریل در یک صفحه. 5

شکل 3: توتومری در اورتو هیدروکسی شیف بازها 7

شکل 4: اثر حلال بر جابه‌جایی maxλ در اورتو هیدروکسی شیف بازها 7

شکل 5: سنتز لیگاند باز شیف... 8

شکل 6: واکنش کلی تشکیل بازها ی شیف... 9

شکل 7: مکانیسم واکنش بین یک گروه کربونیل با آمین نوع اول و تشکیل باز شیف 9

شکل8: ساختار لیگاند شیف باز تکدندانه. 11

شکل9: نمونه ای از لیگاند باز شیف دو دندانه   11

شکل 10: نمونه ای از لیگاند بازشیف سه دندانه. 12

شکل 11: بازهای شیف چهار دندانه. 12

شکل 12: نمونه ای از لیگاند باز شیف پنج دندانه و شش دندانه. 13

شکل 13: ساختار یک شیف باز هفت دندانه ای.. 13

شکل 14: نمونه ای از باز شیف ماکروسیکلیک هنگام تشکیل کمپلکس با وانادیوم 14

شکل 15: نمونه هایی از بازهای شیف نامتقارن 15

شکل 16: سنتز کمپلکس باز شیف... 16

شکل 17: نمودار  DTA/TGA برای نشان دادن چگونگی پایداری حرارتی ترکیبات.. 19

 

منابع:

[1] Garnovskii AD, Nivorozhkin AL,Minkin VI (1993) Coordination chemistry reviews 126:1-69

[2] Cozzi PG (2004) Chemical Society Reviews 33:410-421

[3] Holm R, Everett G,Chakravorty A (1966) Progress in Inorganic Chemistry, Volume 7 83-214

[4] Pärssinen A, Luhtanen T, Klinga M, Pakkanen T, Leskelä M,Repo T (2005) European journal of inorganic chemistry 2005:2100-2109

[5] Calligaris M, Randaccio L, Wilkinson G, Gillard R,McCleverty J  G. Wilkinson (Series Ed.) 715-738

[6] Minkin V, Zhdanov YA, Medyantzeva E,Ostroumov YA (1967) Tetrahedron 23:3651-3666

[7] Bulgarevich S, Adamova S, Polunin A, Kogan V,Osipov O (1977) Zhurnal obshchei khimii 47:1144-1148

[8] Bernstein J, Engel Y,Hagler A (1981) The Journal of Chemical Physics 75:2346-2353

[9] Hadjoudis E (1995) Molecular Engineering 5:301-337

[10] Sereda V, Antipin MY, Timofeeva T, Struchkov YT, Shelyazhenko S, Fialkov Y, Boldeskul I,Yagupolsky L (1988) Ukrainskll khimicheskii zhurnal 54:855-861

[11] Lozier RH, Bogomolni RA,Stoeckenius W (1975) Biophysical journal 15:955

[12] Hodnett EM,Dunn WJ (1970) Journal of medicinal chemistry 13:768-770

[13] Dürr H,Bouas-Laurent H (2003) Photochromism: molecules and systems, Gulf Professional Publishing,

[14] Moustakali-Mavridis It, Hadjoudis E,Mavridis A (1978) Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 34:3709-3715

[15] Moustakali-Mavridis I, Terzis A,Hadjoudis E (1987) Acta Crystallographica Section C: Crystal Structure Communications 43:1389-1391

[16] Inokuma Y, Kawano M,Fujita M (2011) Nature chemistry 3:349-358

[17] Yıldız M, Kılıç Z,Hökelek T (1998) Journal of Molecular Structure 441:1-10

[18] Salman SR,Kamounah FS (2002) Spectroscopy letters 35:327-335

[19] Ünver H, Kabak M, Zengin DM,Durlu TN (2001) Journal of chemical crystallography 31:203-209

[20] Mart H, Saçak M, Yürük H, Şahmetlioğlu E,Vilayetoğlu A (2004) Journal of Polymer Science Part A: Polymer Chemistry 42:1120-1125

[21] García-Vázquez JA, López-Becerra M,Masaguer JR (1983) Transition Metal Chemistry 8:233-235

[22] Lee PF, Yang C-T, Fan D, Vittal JJ,Ranford JD (2003) Polyhedron 22:2781-2786

[23] Borisova NE, Reshetova MD,Ustynyuk YA (2007) Chemical reviews 107:46-79

[24] Collinson SR,Fenton DE (1996) Coordination chemistry reviews 148:19-40

[25] Westheimer F,Taguchi K (1971) The Journal of Organic Chemistry 36:1570-1572

[26] Chakraborti AK, Bhagat S,Rudrawar S (2004) Tetrahedron Letters 45:7641-7644

[27] White WA,Weingarten H (1967) The Journal of Organic Chemistry 32:213-214

[28] Armstrong JD, Wolfe CN, Keller JL, Lynch J, Bhupathy M, Volante R,De Vita RJ (1997) Tetrahedron letters 38:1531-1532

[29] Liu G, Cogan DA, Owens TD, Tang TP,Ellman JA (1999) The Journal of Organic Chemistry 64:1278-1284

[30] Samec JS,Bäckvall JE (2002) Chemistry–A European Journal 8:2955-2961

[31] Kulkarni A, Patil SA,Badami PS (2009) European Journal of Medicinal Chemistry 44:2904-2912

[32] Yang HJ, Sun WH, Li ZL,Ma Z (2002) Chinese Chemical Letters 13:3-6

[33] Thaker B,Barvalia R (2011) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 84:51-61

[34] Gopalakrishnan M, Sureshkumar P, Kanagarajan V,Thanusu J (2007) Res Chem Intermed 33:541-548

[35] Guzen KP, Guarezemini AS, Orfao AT, Cella R, Pereira CM,Stefani HA (2007) Tetrahedron letters 48:1845-1848

[36] Jørgensen KA (1989) Chemical Reviews 89:431-458

[37] Grivani G, Bruno G, Rudbari HA, Khalaji AD,Pourteimouri P (2012) Inorganic Chemistry Communications 18:15-20

[38] Grivani G, Delkhosh S, Fejfarová K, Dušek M,Khalaji AD (2013) Inorganic Chemistry Communications 27:82-87

[39] Ray A, Banerjee S, Sen S, Butcher RJ, Rosair GM, Garland MT,Mitra S (2008) Structural Chemistry 19:209-217

[40] Ahmed A, BenGuzzi S,El-Hadi A (2007) Journal of Science and its Applications 1:79-90

[41] Prabhakaran R, Krishnan V, Geetha A, Bertagnolli H,Natarajan K (2006) Inorganica chimica acta 359:1114-1120

[42] Zamani HA, Ganjali MR, Faridbod F,Salavati-Niasari M (2012) Materials Science and Engineering: C 32:564-568

[43] Gholivand M, Rahimi-Nasrabadi M, Ganjali M,Salavati-Niasari M (2007) Talanta 73:553-560

[44] Sasi S, Kurup MP,Suresh E (2007) Journal of Chemical Crystallography 37:31-36

[45] Pawar V, Joshi S,Uma V (2010) Synthesis 2:2169-2172

[46] Khuhawar M, Mughal M,Channar A (2004) European polymer journal 40:805-809

[47] Biswas A, Drew MG,Ghosh A (2010) Polyhedron 29:1029-1034

[48] Sarkar B, Bocelli G, Cantoni A,Ghosh A (2008) Polyhedron 27:693-700

[49] Johnson CP, Atwood JL, Steed JW, Bauer CB,Rogers RD (1996) Inorganic chemistry 35:2602-2610

[50] Sharghi H,Naeimi H (1999) Bulletin of the Chemical Society of Japan 72:1525-1531

[51] Zhang W,Jacobsen EN (1991) The Journal of Organic Chemistry 56:2296-2298

[52] Kojima M, Taguchi H, Tsuchimoto M,Nakajima K (2003) Coordination chemistry reviews 237:183-196

[53] Gupta K,Sutar AK (2008) Coordination Chemistry Reviews 252:1420-1450

[54] Crans DC, Smee JJ, Gaidamauskas E,Yang L (2004) Chemical reviews 104:849-902

[55] Aiping G, Mei W, Dongping W, Zhang L, Haibin L, Wei T,Licheng S (2006) Chinese Journal of Catalysis 27:743-748


دانلود با لینک مستقیم


شیف بازها - شیمی فضایی - خواص و کاربرد - توتومری - سنتز و انواع آن

مطالعه سنتز و خواص نانوگویچه‌های حساس به دما با پوسته آبدوست

اختصاصی از سورنا فایل مطالعه سنتز و خواص نانوگویچه‌های حساس به دما با پوسته آبدوست دانلود با لینک مستقیم و پر سرعت .

مطالعه سنتز و خواص نانوگویچه‌های حساس به دما با پوسته آبدوست


مطالعه سنتز و خواص نانوگویچه‌های حساس به دما با پوسته آبدوست

 

مطالعه سنتز و خواص نانوگویچه‌های حساس به دما با پوسته آبدوست

109 صفحه در قالب word

 

 

 

چکیده

هدف این پروژه سنتز نانوکپسول‌های پلیمری آبدوست با پوسته شبکه‌ای است که قادر به حفظ شکل گویچه‌ای خود هستند. این نانوکپسول‌ها حامل‌های هوشمند حساس‌دوتایی با پوسته پلی‌آکریلیک‌اسید حساس به pH و پوسته پلی(2- هیدروکسی‌اتیل‌متیلاکریلات) حساس به دما با دمای انتقال فاز نزدیک به دمای بدن هستند.برای این کار، ابتدا نانوذرات سیلیکا در طی 2 مرحله با 2 عامل اصلاح‌کننده سطحی متفاوت اصلاح شدند و شروع‌کننده پلیمریزاسیون رادیکالی انتقال اتم (ATRP) روی سطح ذرات پیوند خورد. سپس، با استفاده از تکنیک ATRP پلیمریزاسیون مونومر متیل‌اکریلات روی سطح نانوذرات انجام گرفت و با استفاده از ماکروشروع‌کننده‌های حاصل،پلی(2- هیدروکسی‌اتیل‌متاکریلات) به عنوان پوسته دوم سنتز شد. هیدرولیز پوسته پلی‌متیل‌اکریلات به منظور ایجاد پلی‌اکریلیک‌اسید و سپس شبکه‌ای‌شدن این پوسته به منظور حفظ ساختار انجام و بعد از حذف هسته سیلیکا ساختار مورد نظر حاصل شد. در روش دوم، برای استفاده از تکنیک پلیمریزاسیون RAFT جهت ایجاد نانوذرات با پوسته‌های پلیمری، از واکنش عامل RAFT بیس‌تیوبنزویل‌دی‌سولفاید با نانوذرات اصلاح‌شده استفاده و شروع‌کننده ATRP به عامل انتقال پلیمریزاسیون RAFT تبدیل شد. سپس، به ترتیب پلیمریزاسیون‌های آکریلیک‌اسید و
2- هیدروکسی‌اتیل‌متاکریلات بر روی سطح نانوذرات انجام شدند.به منظور ایجاد ساختاری پایدار، پوسته اول یعنی پلی‌آکریلیک‌اسید شبکه‌ای و سپس، به منظور ایجاد نانوکپسول‌های پلیمری، هسته سیلیکایی نانوذرات توسط HF خارج‌ شد.

از آزمون FTIR برای شناسایی گروه‌های عاملی عوامل اصلاح و نیز پلیمرهای پیوندخورده به سطح نانوذرات استفاده شد. همچنین آزمون 1H-NMR برای شناسایی پلیمرهای سنتزشده به کار رفت. آزمون TGA برای تعیین کمی مقادیر اصلاح‌کننده‌ها و پلیمرهای پیوندخورده به سطح وآزمون SEM به منظور بررسی ساختار ظاهری نانوذرات خالص و نیز نانوذرات اصلاح‌شده استفاده شد. نتایج ساختار کروی نانوذرات در همه نمونه‌ها و و نیز افزایش قطر نانوذرات پس از هر مرحله پلیمریزاسیون را به خوبی نشان داد. تصاویر TEM ساختار هسته- پوسته نانوذرات پس از پلیمریزاسیون و نیز ساختار کپسولی (میان‌تهی) را پس از فرآیند خارج‌سازی هسته سیلیکا به خوبی نشان می‌دهند.

 

کلیدواژه‌ها: ATRP، RAFT، هسته- پوسته، نانوکپسول، پلی‌اکریلیک‌اسید،
پلی(2- هیدروکسی‌اتیل‌متاکریلات)

 

فهرست مطالب

فهرست مطالب... ‌ج

فصل اول: 1

مروری بر منابع. 1

1-1- پلیمریزاسیون رادیکال آزاد کنترل‌شده/ زنده 2

1-1-1- مقدمه. 2

1-1-2- پلیمریزاسیون کنترل‌شده/"زنده" از طریق روش NMP. 3

1-1-3- پلیمریزاسیون کنترل‌شده/"زنده" از طریق روش ATRP. 9

1-1-4- پلیمریزاسیون کنترل‌شده/ "زنده" از طریق روش RAFT. 12

1-1-5- پلیمریزاسیون کاتالیستی انتقال زنجیر برگشت‌پذیر (RTCP) 19

1-2- استفاده از پلیمریزاسیون کنترل‌شده/"زنده" برای تهیه نانوکامپوزیت‌ها 20

1-2-1- روش "پیوند به". 21

1-2-2- روش پلیمریزاسیون آغازشده از سطح.. 23

1-2-3- روش "پیوند به واسطه". 33

1-3- پلیمرهای حرارت پاسخگو. 35

1-3-1- مقدمه. 35

1-3-2- روش های بررسی پلیمرهای حرارت‌پاسخگو در محلول. 37

1-4- پلی‌آکریلیک‌اسید. 40

1-4-1- مقدمه. 40

1-4-2- پلیمریزاسیون مستقیم آکریلیک‌اسید. 43

1-4-3- کوپلیمرهای آکریلیک‌اسید. 43

1-5- پلی‌(2- هیدروکسی‌اتیل‌متاکریلات) 46

فصل دوم: 49

مواد، روش‌ها و تجهیزات... 49

2-1- مقدمه. 50

2-2- مواد. 50

2-2-1- مونومرها 51

2-2-2- نانوذره 51

2-2-3- حلال‌ها 51

2-2-4- شروع‌کننده 52

2-2-5- اصلاح‌کننده‌های سطحی.. 52

2-2-6- عامل RAFT. 53

2-2-7- سایر مواد. 53

2-3- تجهیزات... 54

2-3-1- سامانه صاف‌کردن مخلوط‌ها در فرآیندهای مختلف... 54

2-3-2- راکتور. 54

2-3-3- آون. 55

2-3-4- سانتریفیوژ. 55

2-3-5- اولتراسونیکاسیون. 56

2-4- آنالیزها و دستگاه‌های شناسایی.. 57

2-4-1- طیف سنجی مادون قرمز تبدیل فوریه. 57

2-4-2- وزن‌سنجی حرارتی.. 57

2-4-3- پراکنش نور دینامیکی.. 58

2-4-4- میکروسکوپ الکترونی عبوری.. 58

2-4-5- میکروسکوپ الکترونی روبشی.. 59

2-4-6- رزونانس مغناطیسی هسته. 59

2-5- اصلاح سطح نانوذرات سیلیکا 59

2-5-1- آمین‌دارکردن سطح نانوذرات... 59

2-5-2- برم‌دارکردن سطح نانوذرات (نشاندن شروع‌کننده ATRP) 60

2-5-3- تبدیل شروع‌کننده ATRP به عامل RAFT. 62

2-6- واکنش‌های پلیمریزاسیون. 63

2-6-1- استفاده از روش ATRP. 63

2-6-2- استفاده از روش پلیمریزاسیون RAFT. 65

2-7- شبکه‌ای‌کردن پلی‌آکریلیک‌اسید. 67

2-8- حذف هسته سیلیکا و تهیه نانوذرات کروی توخالی شاخه‌دار. 68

فصل سوم. 69

نتایج و بحث... 69

3-1- تحلیل داده‌های FTIR.. 70

3-1-1- نشاندن گروه‌های آمینی و شروع‌کننده ATRP روی سطح نانوذرات... 70

3-1-2- پلیمریزاسیون متیل‌اکریلات با روش ATRP. 71

3-1-3- افزودن قطعه  PHEMAبه PMA پیوندخورده به سطح با پلیمریزاسیون ATRP. 71

3-1-4- هیدرولیز PMA و تبدیل آن به PAA.. 72

3-1-5- پلیمریزاسیون آکریلیک‌اسید با روش RAFT. 73

3-1-6- سنتز قطعه PHEMA با روش RAFT. 73

3-2- تحلیل داده‌های آزمون TGA.. 74

3-3- بررسی ساختار نانوذرات با استفاده از تصاویر TEM.. 76

3-3-1- ساختارنانوذرات سنتز شده به روش ATRP. 76

3-3-2- ساختارنانوذرات سنتز شده به روش RAFT. 77

3-4- بررسی نانوذرات با استفاده از تصاویر SEM.. 78

3-4-1- بررسی نانوذرات تشکیل شده به روش ATRP. 78

3-4-2- بررسی مورفولوژیکی نانوذرات تشکیل شده به روش RAFT. 79

3-5- تحلیل داده‌های طیف‌سنجی 1H-NMR.. 82

نتیجه گیری.. 85

مراجع. 87

 

پلیمریزاسیون رادیکال آزاد کنترل‌شده/ زنده

1- مقدمه

در دو دهه گذشته، برخی از روش‌های پلیمریزاسیون که تطبیق‌پذیری روش رادیکال آزاد را با کنترل پلیمریزاسیون آنیونی ترکیب کرده‌اند، ابداع شده‌اند. این روش‌ها به‌عنوان پلیمریزاسیون رادیکال آزاد کنترل‌شده/"زنده"[1] شناخته شده‌اند و بر دو اصل اختتام برگشت‌پذیر و انتقال برگشت‌پذیر استواراند. پلیمریزاسیون با واسطه نیتروکسید[2] [1-3] و پلیمریزاسیون رادیکالی با انتقال اتم[3] [4] مثال‌هایی از اختتام برگشت‌پذیر هستند در حالی که روش پلیمریزاسیون انتقال زنجیر افزایشی- جدایشی برگشت‌پذیر[4] [5-6] نمونه‌ای از انتقال برگشت‌پذیر است. در اختتام برگشت‌پذیر، انتهای زنجیر پلیمر با یک ترکیب شیمیایی که می‌تواند به صورت برگشت‌پذیری متحمل تجزیه شیمیایی گردد، پوشیده می‌شود. در روش NMP، این ترکیب یک گروه نیتروکسید است، درحالی که در ATRP، یک هالید به گونه‌ای برگشت‌پذیر به یک کمپلکس فلز واسطه[5] انتقال می‌یابد. در فرآیندهای بر پایه انتقال برگشت‌پذیر، تعویض سریع رادیکال‌های در حال رشد از طریق عامل انتقال وجود دارد. در فرآیند RAFT ترکیبات تیوکربونیل‌تیو[6] مسئول این تعویض هستند و این تعویض از طریق ایجاد یک رادیکال واسطه انجام می‌شود.

از میان سه روش موجود، فرآیند RAFT قویترین روش برای برای بهبود خواص است. این روش به وجود ناخالصی در سامانه زیاد حساس نیست و با دامنه وسیعی از مونومرها و شرایط واکنشی سازگار است [5-10]. به علاوه، فرآیند RAFT قادر است پلیمریزاسیون را در محیط‌های پراکنده آبی کنترل کند
[11-14]، در حالی که NMP و ATRP تا حدودی برای این هدف مناسب نیستند. در هر دو این موارد، شرکت‌کردن نیتروکسید یا کمپلکس فلز واسطه بین فاز آبی و آلی دلیل این امر است که شدیداً بر پلیمریزاسیون اثر می‌گذارد [15-17]. علاوه بر این، ناپایداری لاتکس و جدایی فازی برای سامانه‌های امولسیونی ATRP گزارش شده است [18].

 

2- پلیمریزاسیون کنترل‌شده/"زنده" از طریق روش NMP

بررسی‌های اولیه توسط اوتسو[7] در زمینه پلیمریزاسیون‌های کنترل‌شده/"زنده" در ارتباط با کاربرد اینیفرترها[8] (شروع‌کننده‌هایی هستند که واکنش انتقال به شروع‌کننده یکی از مکانیسم‌های اختتام است) برای کنترل واکنش‌های اختتام و انتقال بود [19]. اینیفرترها با یک رادیکال در حال رشد به صورت برگشت‌پذیری واکنش می‌دهند تا بین یک حالت غیرفعال[9] و حالت فعال (رشدکننده)[10] تعویض شوند. طرح کلی از این واکنش در طرح 1-1 نشان داده شده است. متاسفانه، ترکیبات اینیفرترها پلیمرهایی با شاخص پراکندگی نامطلوبی در مقایسه با سایر سامانه‌های زنده تولید می‌کنند.

 

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود، ولی در فایل دانلودی همه چیز مرتب و کامل می‌باشد.
متن کامل با فرمت
word را که قابل ویرایش و کپی کردن می باشد، می توانید در ادامه تهیه و دانلود نمائید.

 


دانلود با لینک مستقیم


مطالعه سنتز و خواص نانوگویچه‌های حساس به دما با پوسته آبدوست