فرمت فایل :powerpoint (لینک دانلود پایین صفحه) تعداد صفحات16 صفحه
پاورپوینت درباره دلایل افزایش نانولوله ها به پلیمرها و کامپوزیت ها
فرمت فایل :powerpoint (لینک دانلود پایین صفحه) تعداد صفحات16 صفحه
وجود یک سری مختصات ویژه نانو لولههای کربنی، آن ها را به انتخاب ایده آلی برای بسیاری از کاربردها تبدیل کرده است.
امروزه در روند تحقیق درباره نانو لولهها توجه و تعمق ویژهای بر روی استفاده از آن ها در ساخت ابزارها متمرکز شده است. اکثر پژوهشگرانی که در دانشگاهها و آزمایشگاههای تحققاتی سرتاسر دنیا بر روی نانو لولهها کار میکنند با خوشبینی پیشبینی میکنند که در آیندهای نزدیک نانو لولهها کاربردهای صنعتی وسیعی خواهند داشت.
هماکنون امکان ساخت ابزارهای بسیار جالبی وجود دارد، اما در خصوص موفقیت تجاری آن ها، باید در آینده قضاوت کرد. تقریباً تمام مقالات به طور ضمنی به کاربرد نانو لولهها و بهرهبرداری تجاری از آن ها در آینده اشاره دارند. آینده کاربرد نانو لولهها در بخش الکترونیک روشن است؛ خواص الکتریکی و پایداری شیمیایی بی بدیل نانو لولهها به طور قاطع ما را به سمت استفاده از این خواص سوق خواهد داد. بنابراین در ادامه به شرح چند مورد از حوزههای مهم کاربرد نانو لولهها می پردازیم.
ترانزیستورها
نانو لولهها در آستانه کاربرد در ترانزیستورهای سریع هستند، اما آن ها هنوز هم در اتصالات داخلی استفاده میشوند. بسیاری از طراحان دستگاهها تمایل دارند به پیشرفتهایی دست یابند که آن ها را به افزایش تعداد اتصالات داخلی دستگاهها در فضای کوچک تر، قادر نماید. ترانزیستورهای ساخته شده از نانو لولهها دارای آستانه میباشند (یعنی سیگنال باید از یک حداقل توان برخوردار باشد تا ترانزیستور بتواند آن را آشکار کند) که میتوانند سیگنالهای الکتریکی زیر آستانه را در شرایط اختلال الکتریکی یا نویزآشکار و ردیابی نمایند. همچنین از آنجایی که ضریب تحرک، شاخص حساسیت یک ترانزیستور برای کشف بار یا شناسایی مولکول مجاور میباشد، لذا ضریب تحرک مشخص میکند که قطعه تا چه حد میتواند خوب کار کند. ضریب تحرک تعیین میکند که بارها در یک قطعه چقدر سریع حرکت میکنند و این نیز سرعت نهایی یک ترانزیستور را تعیین مینماید.
لذا اهمیت استفاده از نانو لولهها و تولید ترانزیستورهای نانو لولهای با داشتن ضریب تحرک برابر با 100 هزار سانتیمتر مربع بر ولت ثانیه در مقابل سیلیکون با ضریب تحرک 1500 سانتیمتر مربع بر ولت ثانیه و ایندیم آنتیمونید (بالاترین رکورد بدست آمده تا به امروز) با ضریب تحرک 77 هزار سانتیمتر مربع بر ولت ثانیه بیش از پیش مشخص میشود.
فهرست مطالب:
مقدمه
انواع طراحی ترانزیستور CNT
نوع دوقطبی
نوع CNTFET
انواع CNT ها
دلایل استفاده از نانولوله کربنی
مشخصات عمومی یک CNT
تقسیم بندی نانولوله ها بر اساس بردار کایرال
تاریخچه
مراحل ساخت
انواع روش های ساخت ترانزیستور CNT
گداختگی
افزایش ناخالصی
تفاوت های دو روش بالا
ساخت گیت NOT با CNTFET
ترانزیستور نانولوله ای دو گیتی
بررسی مشخصات ولتاژ-جریان ترانزیستور CNT
توزیع حامل در نانولوله زیگزاگ
نتیجه گیری
پاورپوینت کامل و جامع درباره ی نانولوله های کربنی که هم برای یادگیری بوده و هم قابل ارائه در کلاس های درس می باشد و شامل تاریخچه، معرفی و شرح کاربرد نانولوله های کربنی به همراه تصاویر مربوطه می باشد.
PowerPoint + Pdf
دارای 46 اسلاید.
چکیده:
از آنجائیکه شرکت های بزرگ در رشته نانو فناوری مشغول فعالیت هستند و رقابت بر سر عرصه محصولات جدید شدید است و در بازار رقابت، قیمت تمام شده محصول، یک عامل عمده در موفقیت آن به شمار می رود، لذا ارائه یک مدل مناسب که رفتار نانولوله های کربن را با دقت قابل قبولی نشان دهد و همچنین استفاده از آن توجیه اقتصادی داشته باشد نیز یک عامل بسیار مهم است. به طور کلی دو دیدگاه برای بررسی رفتار نانولوله های کربنی وجود دارد، دیدگاه دینامیک مولکولی و محیط پیوسته. دینامیک مولکولی با وجود دقت بالا، هزینه های بالای محاسباتی داشته و محدود به مدل های کوچک می باشد. لذا مدل های دیگری که حجم محاسباتی کمتر و توانایی شبیه سازی سیستمهای بزرگتر را با دقت مناسب داشته باشند بیشتر توسعه یافته اند.
پیش از این بر اساس تحلیل های دینامیک مولکولی و اندرکنش های بین اتم ها، مدلهای محیط پیوسته، نظیر مدلهای خرپایی، مدلهای فنری، قاب فضایی، بمنظور مدلسازی نانولوله ها، معرفی شده اند. این مدلها، بدلیل فرضیاتی که برای ساده سازی در استفاده از آنها لحاظ شده اند، قادر نیستند رفتار شبکه کربنی در نانولوله های کربنی را بطور کامل پوشش دهند.
در این تحقیق از ثوابت میدان نیرویی بین اتمها و انرژی کرنشی و پتانسیل های موجود برای شبیه سازی رفتار نیرو های بین اتمی استفاده شده و به بررسی و آنالیز رفتار نانولوله های کربنی از چند دیدگاه مختلف می پردازیم، و مدل های تدوین شده را به شرح زیر ارائه می نمائیم:
1.مدل انرژی- معادل
2.مدل اجزاء محدود بوسیله نرم افزار ANSYS
3.مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB
مدل های تدوین شده به منظور بررسی خصوصیات مکانیکی نانولوله کربنی تک دیواره بکار گرفته شده است. در روش انرژی- معادل، انرژی پتانسیل کل مجموعه و همچنین انرژی کرنشی نانو لوله کربنی تک دیواره بکار گرفته می شود. خصوصیات صفحه ای الاستیک برای نانو لوله های کربنی تک دیواره برای هر دو حالت صندلی راحتی و زیگزاگ در جهت های محوری و محیطی بدست آمده است.
در مدل اجزاء محدود بوسیله نرم افزار ANSYS ، به منظور انجام محاسبات عددی، نانو لوله کربنی با یک مدل ساختاری معادل جایگزین می شود.
در مدل اجزاء محدود سوم، کد عددی توسط نرم افزار MATLAB تدوین شده که از روش اجزاء محدود برای محاسبه ماتریس سختی برای یک حلقه شش ضلعی کربن، و تعمیم و روی هم گذاری آن برای محاسبه ماتریس سختی کل صفحه گرافیتی، استفاده شده است.
اثرات قطر و ضخامت دیواره بر روی رفتار مکانیکی هر دو نوع نانو لوله های کربنی تک دیواره و صفحه گرافیتی تک لایه مورد بررسی قرار گرفته است. مشاهده می شود که مدول الاستیک برای هر دو نوع نانو لوله های کربنی تک دیواره با افزایش قطر لوله بطور یکنواخت افزایش و با افزایش ضخامت نانولوله، کاهش می یابد. اما نسبت پواسون با افزایش قطر ،کاهش می یابد. همچنین منحنی تنش-کرنش برای نانولوله تک دیواره صندلی راحتی پیش بینی و تغییرات رفتار آنها مقایسه شده است. نشان داده شده که خصوصیات صفحه ای در جهت محیطی و محوری برای هر دو نوع نانو لوله کربنی و همچنین اثرات قطر و ضخامت دیواره نانو لوله کربنی بر روی آنها یکسان می باشد. نتایج به دست آمده در مدل های مختلف یکدیگر را تایید می کنند، و نشان می دهند که هر چه قطر نانو لوله افزایش یابد، خواص مکانیکی نانولوله های کربنی به سمت خواص ورقه گرافیتی میل می کند.
نتایج این تحقیق تطابق خوبی را با نتایج گزارش شده نشان می دهد.
فهرست مطالب
فهرست علائم
فهرست جداول
فهرست اشکال
چکیده1
فصل اول
مقدمه نانو3
1-1 مقدمه4
1-1-1 فناوری نانو4
1-2 معرفی نانولولههای کربنی5
1-2-1 ساختار نانو لولههای کربنی5
1-2-2 کشف نانولوله7
1-3 تاریخچه10
فصل دوم
خواص و کاربردهای نانو لوله های کربنی14
2-1 مقدمه15
2-2 انواع نانولولههای کربنی16
2-2-1 نانولولهی کربنی تک دیواره (SWCNT)16
2-2-2 نانولولهی کربنی چند دیواره (MWNT)19
2-3 مشخصات ساختاری نانو لوله های کربنی21
2-3-1 ساختار یک نانو لوله تک دیواره21
2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره24
2-4 خواص نانو لوله های کربنی25
2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن29
2-4-1-1 مدول الاستیسیته29
2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک33
2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها36
2-5 کاربردهای نانو فناوری39
2-5-1 کاربردهای نانولولههای کربنی40
2-5-1-1 کاربرد در ساختار مواد41
2-5-1-2 کاربردهای الکتریکی و مغناطیسی43
2-5-1-3 کاربردهای شیمیایی46
2-5-1-4 کاربردهای مکانیکی47
فصل سوم
روش های سنتز نانو لوله های کربنی 55
3-1 فرایندهای تولید نانولوله های کربنی56
3-1-1 تخلیه از قوس الکتریکی56
3-1-2 تبخیر/ سایش لیزری58
3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD)59
3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD )61
3-1-5 رشد فاز بخار62
3-1-6 الکترولیز62
3-1-7 سنتز شعله63
3-1-8 خالص سازی نانولوله های کربنی63
3-2 تجهیزات64
3-2-1 میکروسکوپ های الکترونی66
3-2-2 میکروسکوپ الکترونی عبوری (TEM)67
3-2-3 میکروسکوپ الکترونی پیمایشی یا پویشی (SEM)68
3-2-4 میکروسکوپ های پروب پیمایشگر (SPM)70
3-2-4-1 میکروسکوپ های نیروی اتمی (AFM)70
3-2-4-2 میکروسکوپ های تونل زنی پیمایشگر (STM)71
فصل چهارم
شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته73
4-1 مقدمه74
4-2 مواد در مقیاس نانو75
4-2-1 مواد محاسباتی75
4-2-2 مواد نانوساختار76
4-3 مبانی تئوری تحلیل مواد در مقیاس نانو77
4-3-1 چارچوب های تئوری در تحلیل مواد77
4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد77
4-4 روش های شبیه سازی79
4-4-1 روش دینامیک مولکولی79
4-4-2 روش مونت کارلو80
4-4-3 روش محیط پیوسته80
4-4-4 مکانیک میکرو81
4-4-5 روش المان محدود (FEM)81
4-4-6 محیط پیوسته مؤثر81
4-5 روش های مدلسازی نانو لوله های کربنی83
4-5-1 مدلهای مولکولی83
4-5-1-1 مدل مکانیک مولکولی ( دینامیک مولکولی)83
4-5-1-2 روش اب انیشو86
4-5-1-3 روش تایت باندینگ86
4-5-1-4 محدودیت های مدل های مولکولی87
4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها87
4-5-2-1 مدل یاکوبسون88
4-5-2-2 مدل کوشی بورن89
4-5-2-3 مدل خرپایی89
4-5-2-4 مدل قاب فضایی92
4-6 محدوده کاربرد مدل محیط پیوسته95
4-6-1 کاربرد مدل پوسته پیوسته97
4-6-2 اثرات سازه نانولوله بر روی تغییر شکل97
4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله98
4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله99
4-6-5 محدودیتهای مدل پوسته پیوسته99
4-6-5-1 محدودیت تعاریف در پوسته پیوسته99
4-6-5-2 محدودیت های تئوری کلاسیک محیط پیوسته99
4-6-6 کاربرد مدل تیر پیوسته 100
فصل پنجم
مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی 102
5-1 مقدمه103
5-2 نیرو در دینامیک مولکولی104
5-2-1 نیروهای بین اتمی104
5-2-1-1 پتانسیلهای جفتی105
5-2-1-2 پتانسیلهای چندتایی109
5-2-2 میدانهای خارجی نیرو111
5-3 بررسی مدل های محیط پیوسته گذشته111
5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی113
5-4-1 مدل انرژی- معادل114
5-4-1-1 خصوصیات محوری نانولوله های کربنی تک دیواره115
5-4-1-2 خصوصیات محیطی نانولوله های کربنی تک دیواره124
5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS131
5-4-2-1 تکنیک عددی بر اساس المان محدود131
5-4-2-2 ارائه 3 مدل تدوین شده اجزاء محدود توسط نرم افزار ANSYS141
5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB155
5-4-3-1 مقدمه155
5-4-3-2 ماتریس الاستیسیته157
5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی158
5-4-3-4 تعیین و نگاشت المان158
5-4-3-5 ماتریس کرنش-جابجائی161
5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای162
5-4-3-7 ماتریس سختی برای یک حلقه کربن163
5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه167
5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه168
فصل ششم
نتایج171
6-1 نتایج حاصل از مدل انرژی-معادل172
6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره173
6-1-2 خصوصیات محیطی نانولوله کربنی تک دیواره176
6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS181
6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [182
6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره192
6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB196
فصل هفتم
نتیجه گیری و پیشنهادات 203
7-1 نتیجه گیری204
7-2 پیشنهادات206
شامل 234 صفحه word
فهرست مطالب
عنوان صفحه
فهرست علائم. ر
فهرست جداول. ز
فهرست اشکال. س
چکیده 1
فصل اول..
مقدمه نانو. 3
1-1 مقدمه. 4
1-1-1 فناوری نانو. 4
1-2 معرفی نانولولههای کربنی.. 5
1-2-1 ساختار نانو لولههای کربنی.. 5
1-2-2 کشف نانولوله. 7
1-3 تاریخچه. 10
فصل دوم.
خواص و کاربردهای نانو لوله های کربنی.. 14
2-1 مقدمه. 15
2-2 انواع نانولولههای کربنی.. 16
2-2-1 نانولولهی کربنی تک دیواره (SWCNT). 16
2-2-2 نانولولهی کربنی چند دیواره (MWNT). 19
2-3 مشخصات ساختاری نانو لوله های کربنی.. 21
2-3-1 ساختار یک نانو لوله تک دیواره 21
2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره 24
2-4 خواص نانو لوله های کربنی.. 25
2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن.. 29
2-4-1-1 مدول الاستیسیته. 29
2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک... 33
2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها 36
2-5 کاربردهای نانو فناوری.. 39
2-5-1 کاربردهای نانولولههای کربنی.. 40
2-5-1-1 کاربرد در ساختار مواد. 41
2-5-1-2 کاربردهای الکتریکی و مغناطیسی.. 43
2-5-1-3 کاربردهای شیمیایی.. 46
2-5-1-4 کاربردهای مکانیکی.. 47
فصل سوم.
روش های سنتز نانو لوله های کربنی 55
3-1 فرایندهای تولید نانولوله های کربنی.. 56
3-1-1 تخلیه از قوس الکتریکی.. 56
3-1-2 تبخیر/ سایش لیزری.. 58
3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD). 59
3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD ) 61
3-1-5 رشد فاز بخار. 62
3-1-6 الکترولیز. 62
3-1-7 سنتز شعله. 63
3-1-8 خالص سازی نانولوله های کربنی.. 63
3-2 تجهیزات.. 64
3-2-1 میکروسکوپ های الکترونی.. 66
3-2-2 میکروسکوپ الکترونی عبوری (TEM). 67
3-2-3 میکروسکوپ الکترونی پیمایشی یا پویشی (SEM). 68
3-2-4 میکروسکوپ های پروب پیمایشگر (SPM). 70
3-2-4-1 میکروسکوپ های نیروی اتمی (AFM). 70
3-2-4-2 میکروسکوپ های تونل زنی پیمایشگر (STM). 71
فصل چهارم.
شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته. 73
4-1 مقدمه. 74
4-2 مواد در مقیاس نانو. 75
4-2-1 مواد محاسباتی.. 75
4-2-2 مواد نانوساختار. 76
4-3 مبانی تئوری تحلیل مواد در مقیاس نانو. 77
4-3-1 چارچوب های تئوری در تحلیل مواد. 77
4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد. 77
4-4 روش های شبیه سازی.. 79
4-4-1 روش دینامیک مولکولی.. 79
4-4-2 روش مونت کارلو. 80
4-4-3 روش محیط پیوسته. 80
4-4-4 مکانیک میکرو. 81
4-4-5 روش المان محدود (FEM). 81
4-4-6 محیط پیوسته مؤثر. 81
4-5 روش های مدلسازی نانو لوله های کربنی.. 83
4-5-1 مدلهای مولکولی.. 83
4-5-1-1 مدل مکانیک مولکولی ( دینامیک مولکولی) 83
4-5-1-2 روش اب انیشو. 86
4-5-1-3 روش تایت باندینگ... 86
4-5-1-4 محدودیت های مدل های مولکولی.. 87
4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها 87
4-5-2-1 مدل یاکوبسون. 88
4-5-2-2 مدل کوشی بورن. 89
4-5-2-3 مدل خرپایی.. 89
4-5-2-4 مدل قاب فضایی.. 92
4-6 محدوده کاربرد مدل محیط پیوسته. 95
4-6-1 کاربرد مدل پوسته پیوسته. 97
4-6-2 اثرات سازه نانولوله بر روی تغییر شکل.. 97
4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله. 98
4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله. 99
4-6-5 محدودیتهای مدل پوسته پیوسته. 99
4-6-5-1 محدودیت تعاریف در پوسته پیوسته. 99
4-6-5-2 محدودیت های تئوری کلاسیک محیط پیوسته. 99
4-6-6 کاربرد مدل تیر پیوسته 100
فصل پنجم.
مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی 102
5-1 مقدمه. 103
5-2 نیرو در دینامیک مولکولی.. 104
5-2-1 نیروهای بین اتمی.. 104
5-2-1-1 پتانسیلهای جفتی.. 105
5-2-1-2 پتانسیلهای چندتایی.. 109
5-2-2 میدانهای خارجی نیرو. 111
5-3 بررسی مدل های محیط پیوسته گذشته. 111
5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی.. 113
5-4-1 مدل انرژی- معادل. 114
5-4-1-1 خصوصیات محوری نانولوله های کربنی تک دیواره 115
5-4-1-2 خصوصیات محیطی نانولوله های کربنی تک دیواره 124
5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS. 131
5-4-2-1 تکنیک عددی بر اساس المان محدود. 131
5-4-2-2 ارائه 3 مدل تدوین شده اجزاء محدود توسط نرم افزار ANSYS. 141
5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB.. 155
5-4-3-1 مقدمه. 155
5-4-3-2 ماتریس الاستیسیته. 157
5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی.. 158
5-4-3-4 تعیین و نگاشت المان. 158
5-4-3-5 ماتریس کرنش-جابجائی.. 161
5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای.. 162
5-4-3-7 ماتریس سختی برای یک حلقه کربن.. 163
5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه. 167
5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه. 168
فصل ششم.
نتایج 171
6-1 نتایج حاصل از مدل انرژی-معادل. 172
6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره 173
6-1-2 خصوصیات محیطی نانولوله کربنی تک دیواره 176
6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS. 181
6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [. 182
6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره 192
6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB.. 196
فصل هفتم.
نتیجه گیری و پیشنهادات 203
7-1 نتیجه گیری.. 204
7-2 پیشنهادات.. 206
فهرست مراجع 207