سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق تحلیل تقویت کننده های نوری رامن به روش عددی 10 ص

اختصاصی از سورنا فایل دانلود تحقیق تحلیل تقویت کننده های نوری رامن به روش عددی 10 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 11

 

 

تحلیل تقویت کننده های نوری رامن به روش عددی

علیرضا بیتازر

دانشگاه آزاد اسلامی واحد اراک

چکیده

استفاده از فیبرهای نوری تحول عظیمی در انتقال اطلاعات با ظرفیت زیاد ایجاد کرده است. تقویت کننده های نوری یکی از اساسی ترین قطعات در سیستمهای ارتباطی فیبر نوری اند. برای افزایش ظرفیت اطلاعاتی لینکهای WDM و تحقق سیستمهای بسیار دوربرد ، نویز تقویت کننده ها مسأله بسیار مهمی است و در سالهای اخیر تقویت کنندههای توزیع شده رامن به دلیل بهبود عملکرد نویز و پهنای باند بسیار زیاد مورد توجه قرار گرفته اند.

در این رساله ابتدا به بیان روند تکامل تقویت کننده های نوری و مقایسه آنها با یکدیگر می پردازیم و سپس روابط حاکم بر تقویت کننده نوری رامن، را به طور کامل مورد بررسی قرار می دهیم و در نهایت به حل معادلات حاکم بر آن با روش عددی آدامز با در نظر گرفتن آثارحرارتی مربوط به پراش رالی با بازتاب های چند گانه، ASE ،SRS ، استوکس های مرتبه بالا و بر همکنش خود به خودی بین پمپ و سیگنال می پردازیم .

واژههای کلیدی : تقویت کننده نوری رامن ، پراش خودبخودی رامن ، مالتی پلکس تقسیم طول موج

1-1 مقدمه :

در انتقال سیگنال نوری درون فیبرنوری افت توان سیگنال مساله بسیارمهمی است. رفتار اتلاف نور درون فیبر در شکل 1-1 مشاهده می شود. طول موج های1550 و1330 نانومتر هنگام عبور از فیبر کمترین اتلاف را دارند.

 

شکل )1- 1( منحنی تلفات نور درون فیبر نوری شیشه ای به ازای طول موج های مختلف

کاهش توان سیگنال نوری ازحدی که توانایی تحریک آشکارساز را نداشته باشد، به معنی از بین رفتن اطلاعات است. این عاملی مخرب در شبکه های فیبر نوری می باشد. در ابتدا این مشکل بوسیله سیستمهایی بنام تکرار کننده حل می شد. در این سیستمها مطابق شکل (1-2) سیگنال نوری ابتدا به سیگنال الکتریکی تبدیل شده و پس از عملیات تجدید شکل، باز تولید و زمانبندی مجدد به سیگنال نوری تبدیل می شود.

در مرحله تجدید شکل، شکل پالس الکتریکی متناظر با سیگنال نوری تولید می شود. در مرحله باز تولید سیگنال الکتریکی تقویت شده و در زمان بندی مجدد که برای سیگنالهای دیجیتال انجام می شود، زمان سیگنال اصلاح می شود. هر تکرار کننده برای یک طول موج کاربرد دارد. با توجه به انتشار همزمان چندین طول موج در فیبر و ضرورت حفظ همه طول موجها ، تعداد تکرار کننده ها افزایش می یابد که این مسأله از لحاظ قیمت و پیاده سازی مشکل ساز است.

 

شکل(1-2) ساختار لینک نوری با تکرار کننده نوری

با اختراع تقویت کننده های نوری، استفاده از تکرار کننده ها به دلیل وجود مشکلات فراوان در طراحی، پیاده سازی و عملکرد منسوخ شد . امروزه انواع این تقویت کننده ها در لینک های نوری به کار می روند. انواع تقویت کننده های نوری عبارتند از : تقویت کننده های نوری نیمه هادی، فیبری آلاییده، رامن و بریلوین

1-2 اساس عملکرد تقویت کننده رامن

تقویت کننده رامن از خواص ذاتی فیبر سیلیکا برای تقویت استفاده مینماید. بنابراین میتوان از فیبر انتقال بعنوان محیط تقویت کننده استفاده کرد و طی انتقال ، ایجاد بهره نمود. اساس تقویت رامن مبتنی بر پدیده پراش رامن تحریک شده است و این هنگامی اتفاق میافتد که از یک پمپ قوی در فیبر استفاده شود .

پراش رامن برانگیخته فرآیند غیرخطی مهمی است که میتواند فیبرهای نوری را به لیزرهای رامن قابل تنظیم و تقویت کننده های رامن پهن باند تبدیل کند. همچنین می تواند قابلیت عملکرد سیستمهای مخابراتی نوری چند کاناله را با انتقال انرژی از یک کانال به کانالهای مجاور به شدت محدود نماید .

در بسیاری از محیطهای غیر خطی، پراش رامن بخش کوچکی از توان تابشی (حدود) یک پرتو نوری را به میزانی که مدهای ارتعاشی محیط تعیین می کند به پرتو نوری دیگر با فرکانس خاصی تبدیل می کند. این فرآیند اثر رامن نامیده میشود و در مکانیک کوانتومی به صورت پراش یک فوتون برخوردی با یک مولکول روی یک فوتون کم فرکانستر تعریف میشود که در عین حال به مولکول بین دو حالت ارتعاشی ، گذار دست می دهد.

اصولا" اثر رامن مربوط می شود به تغییر فرکانس نور پخش شده از مولکولها , هرگاه فرکانس نور تابشی برابر باشد و فرکانس نور پخش شده باشد , تغییر فرکانس خواهد شد که ممکن است مثبت و یا منفی باشد به تغییر فرکانس رامن مشهور است و نام این اثر را از دانشمند هندی بنام c.v.Raman که این اثر را در سال 1928 بطور تجربی پیدا نمود گرفته اند وی در همان سال مشغول مطالعه وسیعی راجع به نور پخش شده توسط مولکولهای مختلف بود در حین کار متوجه این اثر شد اگرچه در سال 1923 , A.Smekal متوجه این اثر شده بود و حتی همزمان با رامن , Mondelstam Landsberg این اثر را در بلور کوارتز مشاهده کرده بود ولی چون کارهای رامن جامع و کامل بود لذا این اثر را بنام وی کردند .

Raman متوجه شد هرگاه به جسم شفافی نور تک رنگی با فرکانس بتابانیم و این جسم در این ناحیه هیچگونه جذبی نداشته باشد درصد متنابهی از نور بدون تغییر فرکانس از نمونه عبور می کند و مقدار بسیار اندکی از آن به اطراف پخش می شود . وقتی نور پخش شده توسط اسپکترومتر آنالیز شد یک نوار با همان فرکانس دیده می شود , به این نوار , نوار رایلی گویند و سالها قبل از رامن کشف شده بود و شدت آن متناسب با توان چهارم فرکانس نور تابشی است لذا نور آبی که دارای فرکانس بیشتری است با شدت زیادتری از سایر رنگها پخش می شود.[1]

رامن در کنار این نوار نوارهای دیگری بر روی اسپکترومتر مشاهده کرد که فرکانس آنها با نور تابشی یکسان نیست و بطور منظم در دو طرف خط رایلی قرار دارند رامن در آن سالها این تغییر فرکانس را چنین توضیح داد :

هرگاه نوری با فرکانس که انرژی آن است با مولکول بطور الاستیک برخورد کند و بدون تغییر فرکانس به اطراف پخش شود , نور پخش شده همان پخش نور رایلی میباشد و اگر برخورد از نوع غیر الاستیک باشد یعنی فوتون بعد از برخورد مقداری انرژی خود را به ملکول بدهد تا ملکول به سطح انرژی بالاتری برود در این حالت فرکانس نور پخش شده مقدار کمتری خواهد بود و یا اگر فوتون به ملکولی برخورد کند که هنوز در سطح انرژی بالاتری است و این برخورد باعث شود ملکولی به سطح انرژی پایینتر بیاید در این حالت نور پخش شده توسط مولکول دارای فرکانس بیشتری از نور تابشی میباشد ولی چون عده ملکولهایی که در سطح انرژی بالایی هستند نسبت به مولکولهایی که دارای سطح انرژی پایینتری قرار دارند کمتر میباشد لذا شدت نوار پخش شده که دارای فرکانس بیشتری از نور تابشی است ضعیف تر از شدت نور پخش شده که دارای فرکانس کمتری از نور تابشی است می باشد. این تغییر فرکانس بخاطر تغییر انرژی است که در سطوح چرخشی و ارتعاشی صورت میگیرد که به ترتیب به خطوط استوکس (Stokes ) و آنتی استوکس (Anti Stokes) معروف هستند

در سال ١٩٦٢ برای امواج پمپی خیلی شدید مشاهده شد که موج استوکس به سرعت در داخل محیطی که عمدة انرژی پمپ در آن دیده می شود، رشد می کند ، از آن موقع SRS به وسعت مورد مطالعه قرار گرفت.

1-3 تجزیه و تحلیل تقویت کننده های نوری رامن

تجزیه و تحلیل تقویت کننده های نوری رامن بر مبنای یک سری معادلات کوپل پایدار که انتشار رامن ، اثرات حرارتی مربوطه، پراش رالی با بازتاب های چندگانه،1ASE ، پراش رامن تحریک2 شده استوک های مرتبه بالا و برهمکنش خودبخودِی بین تعداد نامحدود پمپ ها و سیگنال ها در آنها لحاظ شده است ، انجام میگیرد. اما همیشه دو فاکتور مهم وجود دارد که موجب پیچیدگی بیشتر در طراحی تقویتکننده رامن میشود:

نخستFRA های پمپ شده با طول موج چندگانه است . بلندترین طول موج ها بهره بالا بدست می دهند ودر حالیکه کوتاه ترین طول موج ها از تضعیف چشمگیر ناشی از انتقال انرژی به طول موجها ی بلند تر- از طریق پراش رامن - رنج می برند . در نتیجه بهره و تخت بودن آن به شدت تحت تأثیر این نوع انتقال انرژی قرار می گیرد و محاسبات را پیچیده تر می کند .

ثانیا" در FRA هائی که به سمت عقب پمپ می شوند ، توان پمپ در انتهای فیبر تزریق می شود بنابراین جهت پیشروی توان پمپ در امتداد فیبر به سمت عقب است حال آنکه جهت سیگنال به سمت جلو است این مسئله فیزیکی بیان کننده یک سری معادلات دیفرانسیلی با شرایط مرزی در مدل ریاضی مربوطه است که حل آنها از حل معادلات دیفرانسیلی با شرایط اولیه به مراتب پیچیده تر است . برای سیستم های DRA WDM از روش تکرار، جهت حل اینگونه مسایل استفاده می شود. بنابراین در طراحی تقویت کننده رامن پهن باند با پمپ های چندگانه برای رسیدن به نتایج مناسب، انتگرال گیری مستقیم از معادلات دیفرانسیل جفتی مدت زیادی طول می کشد.

1-4 معادلات حاکم بر رفتار تقویت کننده رامن

آنالیز انتشار سیگنال دو طرفه تقویت کننده توزیع شده رامن در سیستمهای WDM با پمپ و سیگنال دو طرفه ، ضروری است. نویز در این سیستم شامل تقویت خودبخودی الکترونها ،نویز حرارتی ،پراش پس رو رایلی ، بر همکنش پمپ با پمپ سیگنال با سیگنال و پمپ با سیگنال می باشد. همانطور که گفته شد در تقویت کنندههای رامن پدیده غیرخطیSRS میتواند منجر به مبادله انرژی میان موجهای انتشار پس رو و پیش رو شود .

حالت کلی طبق عملکرد کلاسیک پراش رامن تحریک شده (SRS) معادلات زیر حاصل می شود :

(1-1)

که در اینجا و توان موجهای انتشار پس رو و پیش رو با پهنای باند بسیار بزرگ در فرکانس می باشد ، ضریب تضعیف ، ضریب پراش پس رو رایلی ، ثابت پلانک ، ثابت بولتزمن ، درجه حرارت ، ناحیه مؤثر فیبر نوری در فرکانس ، پارامتر بهره رامن در فرکانس ، فاکتور مقداری برای پلاریزاسیون (قطبیت تصادفی) است که مقدار آن در فاصله 1و2 تغییر می کند. نسبت تلفات نوسانی را شرح می دهد و قسمت 1m= تا 1m=i- سبب تقویت و قسمت 1m=i+ تا n سبب تضعیف کانال در فرکانس میباشد. و فواصل نویز فرضی است (= )


دانلود با لینک مستقیم


دانلود تحقیق تحلیل تقویت کننده های نوری رامن به روش عددی 10 ص

دانلود مقاله کامل درباره فتوسنتز تنفس و تنفس نوری در گیاهان عالی

اختصاصی از سورنا فایل دانلود مقاله کامل درباره فتوسنتز تنفس و تنفس نوری در گیاهان عالی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

فتوسنتز تنفس و تنفس نوری در گیاهان عالی

فتوسنتز تنفس و تنفس نوری در گیاهان عالی:گازکربنیک هوا ماده اصلی است که پیکره گیاهان از آن ساخته شده است. در حقیقت فرآیند فتوسنتز به وسیله احیای گار کربنیک و تشکیل ترکیبات انرژی زا مواد خام آلی و انرژی لازم برای کلیه واکنش های سازنده مواد در گیاه را فراهم می کند و در نتیجه انجام این واکنش ها مواد غذایی مورد نیاز نظیر هیدراتهای کربن، پرتئین ها و چربی ها تولید می شوند عوامل متعددی مانند کمبود مواد عالی و آب ، از طریق کاهش فتوسنتز عملکرد گیاهان را محدود می کنند

بر خلاف اهمیت آشکاری که فتوسنتز در عملکرد گیاهان زراعی دارد. رابطه ی بین فتوسنتز و عملکرد مستقیم نمی باشد . یک گیاه زراعی که سرعت فتوسنتز در برگ های آن زیاد است، الزاما محصول اقتصادی زیادی نخواهد داشت . از سوی دیگر چنانچه فتوسنتز در یک محصول زراعی به اندازه کافی انجام نگیرد، نمی تواند عملکرد مطلوبی داشته باشد.

فتوسنتز

فرایندی که گیاهان سبز به وسیله آن قادرند انرژی تابشی خورشید را دریافت کنند و از آن در تولید قند ها استفاده کنند بی نهایت پیچیده است تا بحا ل این فرآ یند بصورت آزمایشگاهی تکرار نشده است . شیمی فتوسنتز را میتوان در فرایندی خلاصه کرد که در طی آن آب به گاز کربنیک تزکیب می شود و هیدراتهای کربن را تولید می کند. این فرآیند در حضور کلروفیل که رنگدانه ای سبز رنگ در برگ گیاهان است انجام می گیرد و برای پیشبرد واکنش های فتوسنتز به انرژی نورانی نیاز دارد. مراحلی که طی آنها ،گیاه انرژی نورانی را دریافت می کند واکنش های روشنایی یا واکنش های نوری فتوسنتز شناخته می شود و مراحلی که احیای گاز کربنیک و تشکیل قند ها را در بر می گیرد مربوط به واکنش های تاریکی می باشد. زیرا این واکنش ها بعد از اینکه انرژی نورانی توسط شبکه مولکولی دریافت کننده ی نور، گرفته شده و در ترکیبات شیمیایی خاصی ذخیره شد، در تاریکی انجام می گیرند.

واکنش های نوری (فتوشیمیاییی)

دریافت نور مستلزم همکاری نزدیک بین تعداد زیادی از مولکول های کلروفیل و ترکیبات شیمیایی دیگری است که به عنوان کاتالیزور در واکنش های مختلف شرکت دارند اگر چه جزئیات این فرآیند هنوز به طور کامل روشن نیست ولی به هر حال این واکنش ها در ابتدا با جذب یک فوتون بوسیله مولکول های کلروفیل آغاز می شود. مولکول های کلروفیل در اثر جذب انرژی تحریک می شوند، این مولکول های تحریک شونده قادر به انجام کار هستند و می توتنند انرژی شیمیایی خود را به سایر ترکیبات انتقال دهند. در شبکه کلروپلاستی هر 200 مولکول کلروفیل که به نام فتوسیستم خوانده می شود دریافت شد و به محل واکنش انتقال یافت؛ بین انرژی نوارانی منتقل شده و مولکول آب واکنش های فیزیکی-شیمیایی انجام می گیرد. در نتیجه این واکنش ها، مولکول آب شکسته می شود و اکسیژن یک الکترون آزاد می شود. الکترون آزاد شده به سطح انرژی بالاتری صعود می کند. تصور می شود که نور ابتدا به وسیله فتوسنتز جذب می شود، سپس یک الکترون فعال می شود و اکسیژن خارج می شود الکترون فعال شده، توسط گروهی از مولکول ها ناقل الکترون از بین شبکه فتوسنتز 2 و فتوسنتز 1 عبور می کند و جریان عبور مقداری از انرژی پتانسیل شیمیایی خود را از دست می دهد. در این فرآیند هر چند انرژی پتانسیل الکترون تنزل می یابد ولی یکی از پروتئین ها ک وسیله انرژی الکترون فعال شده است به عنوان کاتالیزور در واکنش میان آدنوزین دی فسفات (ADP) و یون فسفات مصزفی وارد عمل می شود و در نتیجه آدنوزین تری فسفات (ATP) تشکیل می شود بنابراین قسمتی از انرژی دریافت شده از فوتون به پیوند پر انرژی فسفات در مولکول ATP منتقل می شود. به دنبال تشکیل ATP الکترون به فتوسنتز I منتقل می شود و آن را فعال می کند . دومین الکترون وارد سیستم می گردد و مو جب تو لید شدن NADPH می گردد . ATP و NADPH انرژی رایج سلولی هستند و واکنش های مر حله تاریکی را به پیش می برند .

واکنشهای تاریکی

واکنشهای شیمیایی که توسط آنها گازکربنیک در جریان فتوسنتز احیا می شود سیکل پیچیده ای را در بر می گیرد که به آن سیکل می گویند. در سیکل کلوین NADPH و ATP برای ساخته شدن ریبولوز او ۵ دی فسفات RUDP به مصرف می رسد. RUDP در حضور آنزیم ریبولوز دی فسفسات کربوکسیلاز با گاز کربنیک ترکیب می شود و دو مولکول اسید 3 فسفو گلیسیریک ایجاد می کند.RUDP سپس از طریق تعدادی واکنش شیمیایی بوسیله ترکیباتی که شامل 3،4،5،6و7 اتم کربن هستند، مجددا ساخته می شود. هر بار که این چرخه تکرار می شود، یک اتم کربن خالص در گیاه تثبیت می شود. کربن به وسیله CO2 هوا وارد چرخه کلوین می شود واز طریق واکنش های گلوکز و فروکتوز برای تولید ساکاروز از سیکل خارج می شود . ساکاروز که از کلروپلاست به درون سلولهای گیاهی منتقل می شود. انرژی و کربن را برای کلید فعل وانفعالات ساخت مواد (سنتزی) در گیاه تامین می شود.

سیستمهای فتوسنتز C3 و C4

مطالعات در سالهای اخیر مشخص کرده است که بعضی گونه ها در جریان فتوسنتز دارای واکنش های اضافی دیگر نیز می باشند. دراین گونه ها نخستین محصول قابل تشخیص در اثر تثبیت CO2 ، ترکیب سه کربنه 3 فسفو گلیسیریک نیست بلکه به جای آن ترکیب چها کربنه ای بنام اگزالوستیک ایجاد می شود و این اسید نیز به سرعت به اسید مالیک یا اسید اسپارتیک تبدیل می شود. به منظور تفکیک این دو مسیر متفاوت فتوسنتز ، معمولا گونه هایی که در فتوسنتز آنها سیکل کلوین به تنهایی انجام می گیرد ، به گیاهان C3 معروفند و به همین ترتیب علامت C4 برای گونه هایی به کار می رود که در آنها اولین محصول پایدار در اثر احیای CO2 یک اسید چهار کربنه است. برخی از گونه های زراعی دارای سیستم فتوسنتز C3 و گروهی نیز C4 می باشند. گونه های C4 نظیر ذرت، سورگوم و نیشکر در شرایط مطلوب در زمره پر محصول ترین گونه های زراعی قرار دارند.

به نظر می رسد در سیستم فتوسنتزهای C4 تغییرات تکاملی در جهتی انجام گرفته است که باعث می شود، غلظت گازکربنیک در محل آنزیم RUDP کربوکسیلاز که عمل کربوکسیلاسیون را انجام می دهد، افزایش یابد. برگها در گونه های C4 دارای نظم ساختمانی ویژه ای هستند و این نظم باعث انجام واکنش های بیوشیمی می شود. ساختمان برگ در گونه های C4 شامل تعداد زیادی رگبرگ است که کلر رگبرگ توسط محفظه یا غلافی از سلول های سبزرنگ پاراشیمی محصور شده است. دسته های غلاف آوندی دارای دیواره ضخیم و نعداد زیادی کلروپلاست درشت است.

با تحقیقات زیادی که بر روی گیاه نیشکر(C4) انجام گردید مشخص شد که در برگ های نیشکر گازکربنیک نخستین بار فقط در سلولهای مزوفیل برگ تثبیت می شود. آنزیمی که مسئول اولین مرحله تثبیت CO2 در برگهای نیشکر است، فسفوانول پیروات کربوکسیلاز(PEPکربوکسیلاز) است، این آنزیم میل ترکیبی زیادی با گاز کربنیک دارد و کارایی آن در جذب CO2 حتی در غلظت پایین گارپزکربنیک موجود در جو، زیاد است. آنزیم PEP کربوکسیلاز در سلولهای مزوفیل یافت می شود و CO2 به وسیله این آنزیم تثبیت شده و به سرعت به اسید مالیک تبدیل شده و به سلول های غلاف آوندی پمپ می گردد. در درون سلول های غلاف آوندی اسید مالیک دکربوکسیله شده و CO2 آزاد می گردد و به چرخه کلوین وارد می شود که حاصل این چرخه تولید ATP و NADPH می باشد.


دانلود با لینک مستقیم


دانلود مقاله کامل درباره فتوسنتز تنفس و تنفس نوری در گیاهان عالی

دانلود پاورپوینت تشخیص دست خط (نویسه خوان نوری - OCR)

اختصاصی از سورنا فایل دانلود پاورپوینت تشخیص دست خط (نویسه خوان نوری - OCR) دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت تشخیص دست خط (نویسه خوان نوری - OCR)


دانلود پاورپوینت تشخیص دست خط (نویسه خوان نوری - OCR)

اگر ما متنی را روی کاغذ داشته باشیم و بخواهیم عین متن را بدون تایپ کردن وارد کامپیوتر کنیم چکار باید بکنیم؟ ما به وسیله «اسکنر» می توانیم تصویری از آن متن را وارد کامپیوتر کنیم، اما این فقط یک تصویر است و نمی توان روی آن پردازش انجام داد.

در واقع « تصویر دیجیتال‌شده» باید به « تصویر قابل پردازش» تبدیل شود

پردازش و آنالیز تصاویر میتواند به عنوان یک ساختار کاربردی و تکنیکی جهت تسخیرکردن، تصحیح کردن، زیاد کردن و تغییر شـکل دادن تصاویری که مشاهده می شود تعریف کرد.

موضوع:

یک سیستمOCR  به ما این امکان را می دهد که یک کتـاب و یا یک مقاله را مستقیما به یک فایل الکترونیکی تبدیل نماییم و آن را با کمک یک پردازشگر تغییر دهیم این تکنولوژی مدتهاست که به وسیله کتابخانه ها وسازمان هـای دولتـی بـرای دسـتیابی الکترونیکـی سریع به مدارک حجیم به کارمی رود و از لحاظ سرعت و هزینـه روش مناسبی است .OCR از معدود زمینه های هوش مصنوعی است که میتوان در عمل به آن تکیه کرد.

تاریخچه سیستم های  OCR:

اولین اقدامات صورت گرفته در زمینة بازشناسی حروف, در سال‌های اول دهه 1900 انجام گرفته است که دانشمندان روسی می خواستند به افراد مبتلا به نارسایی‌های بینایی کمک نماید.

در ســـال1929 در آلمـــان و در ســـال 1933 در آمریکا ابداعاتی در زمینه OCR  ثبت نمودند اینها اولین ایده ها ی شناسای ی حروف هستند.

اولین کامپیوتر تجـار ی  در سال 1951 در آمریکا شروع به کار کـرد. در ایـن زمـان بـود کـه ایـده OCR به عنوان یک پدیده قابل پیاده سازی پذیرفته شد.

در اوایل دهه 90، روش‌های پردازش تصویر و بازشناسی الگو با تکنیک‌های کارآمد هوش مصنوعی ادغام گشتند.

امروزه علاوه بر وجود رایانه‌های قدرتمندتر و تجهیزات الکترونیکی دقیق‌تر مانند اسکنرها، دوربین‌ها و صفحات رقمی‌کننده، استفاده از تکنیک‌های پردازشی مدرن و توانمند همچون شبکه‌های عصبی ، مدل‌های مارکوف پنهان ، منطق‌ فازی، و مدل‌های پردازش زبان طبیعی امکان‌پذیر گشته است.

انواع OCR :

1-تایپی
2-دست نویس
الف-پیوسته
ب-گسسته

شامل 41 اسلاید POWERPOINT


دانلود با لینک مستقیم


دانلود پاورپوینت تشخیص دست خط (نویسه خوان نوری - OCR)

جزوه اطلس کانی شناسی نوری در زیر میکروسکوپ از دانشگاه صنعتی امیرکبیر

اختصاصی از سورنا فایل جزوه اطلس کانی شناسی نوری در زیر میکروسکوپ از دانشگاه صنعتی امیرکبیر دانلود با لینک مستقیم و پر سرعت .

جزوه اطلس کانی شناسی نوری در زیر میکروسکوپ از دانشگاه صنعتی امیرکبیر


جزوه اطلس کانی شناسی نوری در زیر میکروسکوپ از دانشگاه صنعتی امیرکبیر

اطلس کانی شناسی نوری در زیر میکروسکوپ از دانشگاه صنعتی امیرکبیر

این جزوه اکثر کانی های مهم را با عکس و شیوه تشخیص زیر میکروسکوپ آورده و بسیار بسیار مفید است و سریع میتوانید این درس را فرا بگیرید و آماده امتحان شوید !


دانلود با لینک مستقیم


جزوه اطلس کانی شناسی نوری در زیر میکروسکوپ از دانشگاه صنعتی امیرکبیر

دانلود مقاله کامل درباره روش تولید3

اختصاصی از سورنا فایل دانلود مقاله کامل درباره روش تولید3 دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

فیبر نوری

بعد از اختراع لیزر در سال 1960 میلادی، ایده بکارگیری فیبر نوری برای انتقال اطلاعات شکل گرفت .خبر ساخت اولین فیبر نوری در سال 1966 همزمان در انگلیس و فرانسه با تضعیفی برابر با اعلام شد که عملا درانتقال اطلاعات مخابراتی قابل استفاده نبود تا اینکه در سال 1976 با کوشش فراوان محققین تلفات فیبر نوری تولیدی شدیدا کاهش داده شد و به مقدار رسید که قابل ملاحظه با سیم های کوکسیکال مورد استفاده در شبکه مخابرات بود.

 

در ایران در اوایل دهه 60 ، فعالیت های تحقیقاتی در زمینه فیبر نوری در مرکز تحقیقات منجر به تاسیس مجتمع تولید فیبر نوری در پونک تهران گردیدو عملا در سال 1373 تولید فیبرنوری با ظرفیت 50.000 کیلومتر در سل در ایران آغاز شد.فعالیت استفاده از کابل های نوری در دیگر شهرهای بزرگ ایران شروع شد تا در آینده نزدیک از طریق یک شبکه ملی مخابرات نوری به هم متصل شوند.

فیبرنوری یک موجبر استوانه ای از جنس شیشه (یا پلاستیک) که دو ناحیه مغزی وغلاف با ضریب شکست متفاوت ودولایه پوششی اولیه وثانویه پلاستیکی تشکیل شده است . بر اساس قانون اسنل برای انتشار نور در فیبر نوری شرط : می بایست برقرار باشد که به ترتیب ضریب شکست های مغزی و غلاف هستند . انتشار نور تحت تاثیر عواملی ذاتی و اکتسابی ذچار تضعیف می شود. این عوامل عمدتا ناشی از جذب ماورای بنفش ، جذب مادون قرمز ،پراکندگی رایلی، خمش و فشارهای مکانیکی بر آنها هستند . منحنی تغییرات تضعیف برحسب طول موج در شکل زیر نشا ن داده شده است.

  فیبرهای نوری نسل سوم

طراحان فیبرهای نسل سوم ، فیبرهایی را مد نظر داشتند که دارای حداقل تلفات و پاشندگی باشند. برای دستیابی به این نوع فیبرها، محققین از حداقل تلفات در طول موج 55/1 میکرون و از حداقل پاشندگی در طول موج 3/1 میکرون بهره جستند و فیبری را طراحی کردند که دارای ساختار نسبتا پیچیده تری بود. در عمل با تغییراتی در پروفایل ضریب شکست فیبرهای تک مد از نسل دوم ، که حداقل پاشندگی ان در محدوده 3/1 میکرون قرار داشت ، به محدوده 55/1 میکرون انتقال داده شد و بدین ترتیب فیبر نوری با ماهیت متفاوتی موسوم به فیبر دی.اس.اف ساخته شد.

 کاربردهای فیبر نوری

 الف)کاربرد در احساسگرهااستفاده از احساسگرهای فیبر نوری برای اندازه گیری کمیت های فیزیکی مانندجریان الکتریکی، میدان مغناطیسی فشار،حرارت ،جابجایی،آلودگی آبهای دریا سطح مایعات ،تشعشعات پرتوهای گاماوایکس در سال های اخیر شروع شده است . در این نوع احساسگرها ، از فیبر نوری به عنوان عنصر اصلی احساسگر بهره گیری می شود بدین ترتیب که خصوصیات فیبر تحت میدان کمیت مورد اندازه گیری تغییر یافته و با اندازه شدت کمیت تاثیر پذیر می شود.ب)کاربردهای نظامی فیبرنوری کاربردهای بی شماری در صنایع دفاع دارد که از آن جمله می توان برقراری ارتباط و کنترل با آنتن رادار، کنترل و هدایت موشک ها ، ارتباط زیر دریایی ها (هیدروفون) را نام برد . ج)کاربردهای پزشکی فیبرنوری در تشخیص بیماری ها و آزمایش های گوناگون در پزشکی کاربرد فراوان دارد که از آن جمله می توان دزیمتری غدد سرطانی ، شناسایی نارسایی های داخلی بدن،جراحی لیزری فاستفاده در دندانپزشکی و اندازه گیری مایعات و خون نام برد .  

 فن آوری ساخت فیبرهای نوری

برای تولید فیبر نوری ، ابتدا ساختار آن در یک میله شیشه ای موسوم به پیش سازه از جنس سیلیکا ایجادمی گردد و سپس در یک فرایند جداگانه این میله کشیده شده تبدیل به فیبرمی گردد . از سال 1970 روش های متعددی برای ساخت انواع پیش سازه ها به کار رفته است که اغلب آنها بر مبنای رسوب دهی لایه های شیشه ای در اخل یک لوله به عنوان پایه قرار دارند .  

 روشهای ساخت پیش سازه

روش های فرایند فاز بخار برای ساخت پیش سازه فیبرنوری را می توان به سه دسته تقسیم کرد :

- رسوب دهی داخلی در فاز بخار- رسوب دهی بیرونی در فاز بخار                         - رسوب دهی محوری در فاز بخار 

 موادلازم در فرایند ساخت پیش سازه 

- تتراکلرید سیلسکون :این ماده برای تا مین لایه های شیشه ای در فرایند مورد نیاز است .- تتراکلرید ژرمانیوم : این ماده برای افزایش ضریب شکست شیشه در ناحیه مغزی پیش سازه استفاده می شود .- اکسی کلرید فسفریل: برای کاهش دمای واکنش در حین ساخت پیش سازه ، این مواد وارد واکنش می شود .- گازفلوئور : برای کاهش ضریب شکست شیشه در ناحیه غلاف استفاده می شود .- گاز هلیم : برای نفوذ حرارتی و حباب زدایی در حین واکنش شیمیایی در داخل لوله مورد استفاده قرار می گیرد.-گاز کلر: برای آب زدایی محیط داخل لوله قبل از شروع واکنش اصلی مورد نیاز است . 

 مراحل ساخت

+ مراحل سیقل حرارتی: بعد از نصب لوله با عبور گاز های کلر و اکسیژن ، در درجه حرارت بالاتر از 1800 درجه سلسیوس لوله صیقل داده می شود تا بخار اب موجود در جدار داخلی لوله از ان خارج شود.+ مرحله اچینگ: در این مرحله با عبور گازهای کلر، اکسیژن و فرئون لایه سطحی جدار داخلی لوله پایه خورده می شود تا ناهمواری ها و ترک های سطحی بر روی جدار داخلی لوله از بین بروند .+ لایه نشانی ناحیه غلاف : در مرحله لایه نشانی غلاف ، ماده تترا کلرید سیلیسیوم و اکسی کلرید فسفریل به حالت بخار به همراه گاز های هلیم و فرئون وارد لوله شیشه ای می شوند ودر حالتی که مشعل اکسی هیدروژن با سرعت تقریبی 120 تا 200 میلی متر در دقیقه در طول لوله حرکت می کند و دمایی بالاتر از 1900 درجه سلسیوس ایجاد می کند ، واکنش های شیمیایی زیر ب دست می آیند.

 

ذرات شیشه ای حاصل از واکنش های فوق به علت پدیده ترموفرسیس کمی جلوتر از ناحیه داغ پرتاب شده وبر روی جداره داخلی رسوب می کنند و با رسیدن مشعل به این ذرات رسوبی حرارت کافی به آنها اعمال می شود به طوری که تمامی ذرات رسوبی شفاف می گردند و به جدار داخلی لوله چسبیده ویکنواخت می شوند.بدین ترتیب لایه های یشه ای مطابق با طراحی با ترکیب در داخل لوله ایجاد می گردد و در نهایت ناحیه غلاف را تشکیل می دهد. 

ریشه لغوی لیزر در واقع از حروف نخست کلمات Light Amplification by Stimulated Emission of Radiation

که به معنی تشدید نور توسط گسیل القایی تابش است، گرفته شده است.

نگاه اجمالی

لیزر کشفی علمی می‌باشد که به عنوان یک تکنولوژی در زندگی مدرن جاافتاده است. لیزرها به مقدار زیاد در تولیدات صنعتی ، ارتباطات ، نقشه‌برداری و چاپ مورد استفاده قرار می‌‌گیرند. همچنین لیزر در پژوهشهای علمی و برای محدوده وسیعی از دستگاههای علمی‌ ، موارد مصرف پیدا کرده است. برتری لیزر در این است که از منبعی برای نور و تابشهای کنترل شده ، تکفام و پرتوان تولید می‌کند. تابش لیزر ، با پهنای نوار طیفی باریک و توان تمرکزیابی شدید ، چندین برابر درخشانتر از نور خورشید است.

تاریخچه

انیشتین در 1917 میلادی نظریه گسیل القایی را بیان داشت و روابط مشهور جذب و نشر را به جهان عرضه نمود. برپایه این تئوری چهل سال بعد ، تاونز و همکاران او ، نخستین تقویت کننده گسیل القایی را با بکارگیری آمونیاک مورد آزمایش قرار داده و سیستمی‌ به اسم میزر پدید آوردند که در فرکانس 2.3x1011Hz کار می‌کرد.نخستین لیزر در 1960 به وسیله میمن ، با استفاده از یاقوت قرمز (ترکیبی از اکسید آلومینیوم خالص به همراه 5 درصد اکسید کروم (III)) ساخته شد و اولین


دانلود با لینک مستقیم


دانلود مقاله کامل درباره روش تولید3