سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پایان نامه شبکه های عصبی

اختصاصی از سورنا فایل دانلود پایان نامه شبکه های عصبی دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه شبکه های عصبی


دانلود پایان نامه شبکه های عصبی

این سوال که آیا انسان توانا تر است یا کامپیوتر موضوعی است که ذهن بشر را به خود مشغول کرده است.

اگر جواب این سوال انسان است چرا کامپیوتر اعمالی مانند جمع و ضرب و محاسبات پیچیده را در کسری از ثانیه انجام می دهد، حال آنکه انسان برای انجام آن به زمان زیادی نیازمند است. واگر جواب آن کامپیوتر است چرا کامپیوتر از اعمالی مانند دیدن و شنیدن که انسان به راحتی آنها را انجام می دهدعاجزاست.جواب این مسئله را باید در ذات اعمال جستجو کرد . اعمال محاسباتی اعمالی هستند سریالی و پی در پی به همین دلیل توسط کامپیوتر به خوبی انجام می شوند.حال آنکه اعمالی مانند دیدن وشنیدن کارهای هستند موازی که مجمو عه ای از داده های متفاوت و متضاد در آنها تفکیک و پردازش می شوندو به همین دلیل توسط انسان به خوبی انجام می شوند. در واقع مغز انسان اعمال موازی را به خوبی درک و آنها را انجام می دهدو کامپیوتر اعمال سریالی را بهتر انجام می د هد.حال باید دیدآیا می توان این اعمال موازی و در واقع ساختار مغز انسان را به نوعی در کامپیوتر شبیه سازی کرد و آیا می توان امکان یادگیری که از جمله توانایی های انسان است به نوعی در کامپیوتر مدل سازی نمود.این کار به نوعی در انسان هم انجام می شود و زمان انجام آن عمدتا در کودکی است.به عنوان مثال یک کودک ممکن است یک شی مانند چکش را نشناسد اما هنگامی که آن را می بیند واسم آن را یاد می گیرد و سپس چند چکش متفاوت را می بینداین شی را بخوبی می شناسدو اگر بعد  از مدتی چکشی را که تا کنون آن را ندیده است ببیند به راحتی تشخیص می دهد  که شی مورد نظر یک چکش است و تنها از نظر جزئیات با چکش های مشابه که قبلا دیده است تفاوت دارد.

لازم به ذکر است که شبکه های عصبی تنها در یادگیری کاربرد ندارند، بلکه تمام مسائل جدید وکلاسیک توسط آنها قابل حل می باشد.اما آنچه شبکه های عصبی بدان نیازمند است مثالها و نمونه های مفید وکافی است که بتواند به خوبی فضای مسئله را پوشش دهند.حال باید دیدچگونه می توان شبکه عصبی انسان را به نوعی شبیه سازی نمود، برای این کار نخست به ساختار مغز و سیستم عصبی انسان نگاهی گذرا می اندازیم.

مغز انسان یکی از پیچیده ترین اعضای بدن است که تا کنون نیز به درستی شناخته نشده است و شاید اگر روزی به درستی شناخته شودبتوان شبیه سازی بهتری از آن انجام داد و به نتایج بهتری درباره هوش مصنوعی رسید.تحقیقات در مورد شبکه های عصبی نیز از زمانی آغاز شد که رامون سگال درباره ساختار مغز و اجزای تشکیل دهنده آن اطلاعات و نظراتی ارائه کرد. او در اوایل قرن بیستم مغز را به عنوان اجتماعی از اجزای کوچک محاسباتی دانست و آنها را نرون نامید.امروزه ما می دانیم که بیشتر فعالیتهای انسان را نرونها انجام می دهندو در کوچکترین فعالیتهای حیاتی انسان مانند پلک زدن نیز نقش حیاتی و اساسی دارند.این نکته هم بسیار جالب است بدانید که در بدن ما حدودنرون وجود دارد که هر کدام از این نرونها با  نرون دیگر در ارتباط هستند.نرونها شکلها و انواع مختلفی دارند، اما به طور عمده در سه دسته تقسیم بندی می شوند. اما نرون ها از نظری دیگر به دو دسته تقسیم می شوند:1- نرونهای داخلی مغز که در فاصله های حدود 100میکرون به یکدیگر متصلند ونرونهای خارجی که قسمتهای مختلف مغز را به یکدیگر و مغز را به ماهیچه ها و اعضای حسی را به مغز متصل می کنند.اما همانطور که گفتیم نرونها از نظری دیگر به سه دسته تقسیم می شوند که عبارتند از:

مقدمه  1

شبکه عصبی چیست ؟2

یادگیری در سیستم های بیولوژیک 4

سازمان مغز  6
نرون پایه  7
     
عملیات شبکه های عصبی  7

آموزش شبکه های عصبی  10    

معرفی چند نوع شبکه عصبی          14     
پرسپترون تک لایه 14      

پرسپترون چند لایه 21    
backpropagation        25     
هاپفیلد       49      

ماشین  بولتزمن      67      

کوهونن      83     

کاربردهای شبکه های عصبی 86     

منابع 90

شامل 96 صفحه فایل word


دانلود با لینک مستقیم


دانلود پایان نامه شبکه های عصبی

مقاله پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

اختصاصی از سورنا فایل مقاله پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک دانلود با لینک مستقیم و پر سرعت .

مقاله پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک


مقاله پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه:30

 

  

 فهرست مطالب

 

 

پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

 

خلاصه

1- مقدمه

مسئله اصلی که هنوز باید حل شود آموزش است .

2- تحقق شبکه عصبی

2-1- اصول عملکرد

 

2-2- پیاده سازی مدارهای شبکه

 

3- پیاده سازی الگوریتم آموزش ژنتیک

 

 

 

 

خلاصه

مفید بودن شبکه عصبی آنالوگ مصنوعی بصورت خیلی نزدیکی با میزان قابلیت آموزش پذیری                    آن محدود می شود .

2

 

این مقاله یک معماری شبکه عصبی آنالوگ جدید را معرفی می کند که وزنهای بکار برده شده در آن توسط الگوریتم ژنتیک تعیین می شوند .

اولین پیاده سازی VLSI ارائه شده در این مقاله روی سیلیکونی با مساحت کمتر از 1mm که                      شامل 4046 سیناپس و 200 گیگا اتصال در ثانیه است اجرا شده است .

از آنجائیکه آموزش می تواند در سرعت کامل شبکه انجام شود بنابراین چندین صد حالت منفرد                    در هر ثانیه می تواند توسط الگوریتم ژنتیک تست شود .

این باعث می شود تا پیاده سازی مسائل بسیار پیچیده که نیاز به شبکه های چند لایه بزرگ دارند                عملی بنظر برسد .

 

 

 

 

 

 

 


1- مقدمه

شبکه های عصبی مصنوعی به صورت عمومی بعنوان یک راه حل خوب برای مسائلی از قبیل تطبیق الگو     مورد پذیرش قرار گرفته اند .

علیرغم مناسب بودن آنها برای پیاده سازی موازی ، از آنها در سطح وسیعی بعنوان شبیه سازهای عددی           در سیستمهای معمولی استفاده می شود .

یک دلیل برای این مسئله مشکلات موجود در تعیین وزنها برای سیناپسها در یک شبکه                                    بر پایه مدارات آنالوگ است .

موفقترین الگوریتم آموزش ، الگوریتم Back-Propagation است .

این الگوریتم بر پایه یک سیستم متقابل است که مقادیر صحیح را از خطای خروجی شبکه                          محاسبه می کند .

یک شرط لازم برای این الگوریتم دانستن مشتق اول تابع تبدیل نرون است .

در حالیکه اجرای این مسئله برای ساختارهای دیجیتال از قبیل میکروپروسسورهای معمولی                                و سخت افزارهای خاص آسان است ، در ساختار آنالوگ با مشکل روبرو می شویم .

دلیل این مشکل ، تغییرات قطعه و توابع تبدیل نرونها و در نتیجه تغییر مشتقات اول آنها از نرونی به نرون دیگر    و از تراشه ای به تراشه دیگر است و چه چیزی می تواند بدتر از این باشد که آنها با دما نیز                             تغییر کنند .

ساختن مدارات آنالوگی که بتوانند همه این اثرات را جبران سازی کنند امکان پذیر است ولی این مدارات        در مقایسه با مدارهایی که جبران سازی نشده اند دارای حجم بزرگتر و سرعت کمتر هستند .

برای کسب موفقیت تحت فشار رقابت شدید از سوی دنیای دیجیتال ، شبکه های عصبی آنالوگ                 نباید سعی کنند که مفاهیم دیجیتال را به دنیای آنالوگ انتقال دهند .

در عوض آنها باید تا حد امکان به فیزیک قطعات متکی باشند تا امکان استخراج یک موازی سازی گسترده    در تکنولوژی VLSI مدرن بدست آید .

شبکه های عصبی برای چنین پیاده سازیهای آنالوگ بسیار مناسب هستند زیرا جبران سازی نوسانات               غیر قابل اجتناب قطعه می تواند در وزنها لحاظ شود .

 

 

 

مسئله اصلی که هنوز باید حل شود آموزش است .

حجم بزرگی از مفاهیم شبکه عصبی آنالوگ که در این زمینه می توانند یافت شوند ، تکنولوژیهای گیت شناور را جهت ذخیره سازی وزنهای آنالوگ بکار می برند ، مثل EEPROM حافظه های Flash .

در نظر اول بنظر می رسد که این مسئله راه حل بهینه ای باشد .

 آن فقط سطح کوچکی را مصرف می کند و بنابراین حجم سیناپس تا حد امکان فشرده می شود             (کاهش تا حد فقط یک ترانزیستور) .

دقت آنالوگ می تواند بیشتر از 8 بیت باشد و زمان ذخیره سازی داده (با دقت 5 بیت) تا 10 سال              افزایش می یابد .

اگر قطعه بطور متناوب مورد برنامه ریزی قرار گیرد ، یک عامل منفی وجود خواهد داشت                               و آن زمان برنامه ریزی و طول عمر محدود ساختار گیت شناور است .

بنابراین چنین قطعاتی احتیاج به وزنهایی دارند که از پیش تعیین شده باشند .

اما برای محاسبه وزنها یک دانش دقیق از تابع تبدیل شبکه ضروری است .

 

 


دانلود با لینک مستقیم


مقاله پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

دانلود فایل ورد Word پایان نامه بررسی شبکه های عصبی مصنوعی

اختصاصی از سورنا فایل دانلود فایل ورد Word پایان نامه بررسی شبکه های عصبی مصنوعی دانلود با لینک مستقیم و پر سرعت .

دانلود فایل ورد Word پایان نامه بررسی شبکه های عصبی مصنوعی


دانلود فایل ورد Word پایان نامه بررسی شبکه های عصبی مصنوعی
مشخصات مقاله:
عنوان کامل: بررسی و معرفی شبکه های عصبی مصنوعی
دسته: فناوری اطلاعات و کامپیوتر
فرمت فایل: WORD (قابل ویرایش)
تعداد صفحات پروژه: ۱۲۱
چکیده ای از مقدمه آغازین ” پایان نامه بررسی و معرفی شبکه های عصبی مصنوعی” بدین شرح است:

.

هوش محاسباتی یا  (Computational-Intelligence) CI به معنای استخراج هوش، دانش، الگوریتم یا نگاشت از دل محاسبات عددی براساس ارائه به روز داده‌های عددی است. سیستم‌هایCI در اصل سیستم‌های دینامیکی مدل آزاد (Model-free) را برای تقریب توابع و نگاشتها ارائه می‌کند. در کنار این ویژگی بسیار مهم باید از ویژگی مهم دیگری در ارتباط با خصوصیات محاسباتی سیستم‌های CI نام برد، که در آن دقت، وجه‌المصالحه مقاوم بودن، منعطف‌بودن و سهولت پیاده‌سازی قرار می‌گیرد.
مولفه‌های مهم و اساسی CI ، شبکه‌های عصبی )محاسبات نورونی(، منطق فازی) محاسبات تقریبی( و الگوریتم ژنتیک) محاسبات ژنتیکی(است، که هر یک به نوعی مغز را الگو قرار داده‌اند. شبکه‌های عصبی ارتباطات سیناپسی و ساختار نورونی، منطق فازی استنتاجات تقریبی و محاسبات ژنتیکی محاسبات موتاسیونی مغز را مدل می‌کنند. ‍‍‌
هوش مصنوعی:
در شبکه ارتباطی مغز انسانها سیگنالهای ارتباطی به صورت پالسهای الکتریکی هستند.جزء اصلی مغز نرون است که از یک ساختمان سلولی و مجموعه ای از شیارها و خطوط تشکیل شده و شیارها محل ورود اطلاعات به نرون هستند وخطوط محل خروج اطلاعات از نرون اند . نقطه اتصال یک نرون به نرون دیگر را سیناپس می نامند که مانند دروازه یا کلید عمل می کنند. اگر واکنشهایی که میلیونها نرون مختلف به پالسهای متفاوت نشان میدهند با یکدیگر هماهنگ باشند ممکن است پدیده های مهمی در مغز رخ دهد.
آن دسته از پژوهشگران هوش مصنوعی که رویکرد مدل مغزی را دنبال می کنند گونه ای از مدارهای الکتریکی را طراحی کرده اند که تا حدی شبکه مغز را شبیه سازی میکند در این روش هر گره (نرون)به تنهایی یک پردازنده است ولی رایانه های معمولی حداکثر چند cpuدارند هدف عمده کامپیوتر شبکه عصبی این است که مکانیسمی طراحی کند که همانند مغز انسان بازخورد مثبت یاد بگیرد پاسخهای درست و نادرست کدامند.

بخشی از فهرست مقاله:

مقدمه
هوش مصنوعی
به سوی آینده
تاریخچه
تعریف
تاریخچه و تعاریف سیستم‌های خبره
بعضی از تعاریف سیستم های خبره
تاریخچه سیستم های خبره
الگوریتم ژنتیک
تابع سازگاری(FitnessFunction)
Mutation(جهش ژنتیکی)
مقدمه ای بر سیستم های فازی وکنترل فازی
سیستم‌های فازی چگونه سیستم‌هایی هستند؟
سیستم‌های فازی کجا و چگونه استفاده می‌شوند؟
زمینه‌های تحقیق عمده در تئوری فازی
تاریخچه مختصری از تئوری و کاربردهای فازی
فصل دوم

شبکه های عصبی
مقدمه
ساختار مغز
ساختار نرون
چگونه مغز انسان می آموزد ؟
معنای شبکه های عصبی
قوانین هب
از سلول های عصبی انسانی تا سلول های عصبی مصنوعی
رویای جایگزینی ویژگی های مغز در یک سیستم مصنوعی چقدر ممکن گردیده؟
تاریخچه شبکه‌های عصبی
چرا از شبکه های عصبی استفاده می کنیم؟
شبکه های عصبی در مقابل کامپیوتر های معمولی
مزایا و محدودیت های شبکه عصبی
چه کسانی به شبکه عصبی علاقه‌مند هستند؟
نرم‏افزارها و سخت افزارهای شبکه‏ های عصبی
کاربرد شبکه های عصبی
یکپارچگی منطق فازی و شبکه های عصبی
مدل ریاضی یک نرون

یک نرون ساده

قوانین برانگیختگی

یک نرون پیچیده تر

ساختار شبکه های عصبی

مراحل طراحی شبکه

اهداف شبکه های عصبی

تقسیم بندی شبکه های عصبی

انواع یادگیری برای شبکه های عصبی

توپولوژی شبکه های عصبی

شبکه‏های پیش‏خور (Feed Forward)

شبکه‏ های برگشتی(Recurrent)

پرسپترون چند لایه

Perceptronهای ساده

قدرت Perceptron

دنباله‌های Perceptron

آموزش پر سپترون

الگوریتم یادگیری پرسپترون

قانون پرسپترون

قانون دلتا

روشهای دیگر

شبکه های هاپفید

شبکه‌های دارای پس‌خور

شبکه عصبی ترکیبی المن- جردن

پس انتشار خطا

چند بررسی از کاربرد های شبکه های عصبی

فصل سوم

نتیجه گیری

منابع ومأخذ

 

 

 

مشخصات مقاله:
عنوان کامل: بررسی و معرفی شبکه های عصبی مصنوعی
دسته: فناوری اطلاعات و کامپیوتر
فرمت فایل: WORD (قابل ویرایش)
تعداد صفحات پروژه: ۱۲۱

دانلود با لینک مستقیم


دانلود فایل ورد Word پایان نامه بررسی شبکه های عصبی مصنوعی

استفاده از مدل شبکه های عصبی مصنوعی در پیشبینی سختی قطعات فولادی تولید شده به روش متالوژی پودر

اختصاصی از سورنا فایل استفاده از مدل شبکه های عصبی مصنوعی در پیشبینی سختی قطعات فولادی تولید شده به روش متالوژی پودر دانلود با لینک مستقیم و پر سرعت .

استفاده از مدل شبکه های عصبی مصنوعی در پیشبینی سختی قطعات فولادی تولید شده به روش متالوژی پودر


استفاده از مدل شبکه های عصبی مصنوعی در پیشبینی سختی قطعات فولادی تولید شده به روش متالوژی پودر در این فایل pdf استفاده از مدل شبکه های عصبی مصنوعی در پیشبینی سختی قطعات فولادی تولید شده به روش متالوژی پودر مورد بررسی قرار گرفته است
ریز ساختار مواد تولید شده به روش متالورژی پودر از دو بخش اصلی 1- فازهای زمینه و 2- تخلخل تشکیل شده است. این تخلخل ها به عنوان مراکز تمرکز تنش و کاهش دهنده سطح تحمل بار ایفای نقش کرده و از این رو باعث افت و کاهش خواص مکانیکی میشوند.

دانلود با لینک مستقیم


استفاده از مدل شبکه های عصبی مصنوعی در پیشبینی سختی قطعات فولادی تولید شده به روش متالوژی پودر

پیش¬بینی میزان سپرده¬ها با استفاده از روش¬های خطی ARIMA و غیر خطی شبکه¬های عصبی مصنوعی و مقایسه این دو روش (مورد مطالعه بانک سا

اختصاصی از سورنا فایل پیش¬بینی میزان سپرده¬ها با استفاده از روش¬های خطی ARIMA و غیر خطی شبکه¬های عصبی مصنوعی و مقایسه این دو روش (مورد مطالعه بانک سامان) دانلود با لینک مستقیم و پر سرعت .

پیش¬بینی میزان سپرده¬ها با استفاده از روش¬های خطی ARIMA و غیر خطی شبکه¬های عصبی مصنوعی و مقایسه این دو روش (مورد مطالعه بانک سامان)

بصورت ورد ودر110صفحه

چکیده:

در این پایان¬نامه میزان هر یک از سپرده¬های بانک سامان و مجموع کلیه سپرده¬های بانک مذکور، با استفاده مدل خطی آریما و مدل غیرخطی شبکه عصبی مصنوعی پیش¬بینی و در انتها نتایج دو روش با استفاده از معیار¬های ارزیابی ریشه میانگین مربع خطا، میانگین قدر مطلق درصد خطا، میانگین قدر مطلق و ضریب تعیین با یکدیگر مقایسه گردید. برای این موضوع میزان انواع سپرده¬های کلیه شعب بانک سامان، طی سال¬های 1380تا 1390 که به صورت روزانه تهیه شده¬اند، مورد بررسی قرار گرفت. با توجه به انواع سپرده¬ها در مجموع 9 مدل شبکه عصبی و9 مدل آریما برای پیش¬بینی طراحی گردید که برای طراحی و پیش¬بینی مدل¬های شبکه عصبی از نرم¬افزار MATLAB و برای طراحی و پیش¬بینی مدل¬های روش آریما از نرم افزار Eveiws استفاده شد. نتایج پژوهش حاکی از آن است که با توجه به پیچیدگی کم و خطی بودن سری های زمانی که در این پژوهش به کار برده شده¬اند، هر دو روش از توانایی بالایی در پیش¬بینی متغیرها برخوردارند اما در مجموع مدل¬های شبکه عصبی حتی در پیش¬بینی سری¬های زمانی خطی نیز نتایج مناسب تری نسبت به روش خطی آریما داشته¬اند و برای پیش¬بینی بهتر است که از این روش استفاده شود.


دانلود با لینک مستقیم


پیش¬بینی میزان سپرده¬ها با استفاده از روش¬های خطی ARIMA و غیر خطی شبکه¬های عصبی مصنوعی و مقایسه این دو روش (مورد مطالعه بانک سامان)