سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پایان نامه ارشد برق طراحی و شبیه سازی کنترل کننده پیش بین مبتنی بر مدل فازی - عصبی سیستم های غیر خطی چند متغیره

اختصاصی از سورنا فایل پایان نامه ارشد برق طراحی و شبیه سازی کنترل کننده پیش بین مبتنی بر مدل فازی - عصبی سیستم های غیر خطی چند متغیره دانلود با لینک مستقیم و پر سرعت .

پایان نامه ارشد برق طراحی و شبیه سازی کنترل کننده پیش بین مبتنی بر مدل فازی - عصبی سیستم های غیر خطی چند متغیره


پایان نامه ارشد برق طراحی و شبیه سازی کنترل کننده پیش بین مبتنی بر مدل فازی - عصبی سیستم های غیر خطی چند متغیره


طراحی و شبیه سازی کنترل کننده پیش بین مبتنی بر مدل فازی - عصبی سیستم های غیر خطی چند متغیره با استفاده از بهینه سازی گرادیان کاهشی

Design and Simulation of Multi-Variable Nonlinear Predictive Controller Based on Neuro-Fuzzy Model With Gradient Descent Optimization

 

فرمت PDF

تعداد صفحات 89

 


دانلود با لینک مستقیم


پایان نامه ارشد برق طراحی و شبیه سازی کنترل کننده پیش بین مبتنی بر مدل فازی - عصبی سیستم های غیر خطی چند متغیره

پایان نامه ارشد برق طراحی تقویت کننده کم نویز در باند فراپهن با استفاده از تکنولوژی CMOS

اختصاصی از سورنا فایل پایان نامه ارشد برق طراحی تقویت کننده کم نویز در باند فراپهن با استفاده از تکنولوژی CMOS دانلود با لینک مستقیم و پر سرعت .

پایان نامه ارشد برق طراحی تقویت کننده کم نویز در باند فراپهن با استفاده از تکنولوژی CMOS


پایان نامه ارشد برق طراحی تقویت کننده کم نویز در باند فراپهن با استفاده از تکنولوژی CMOS

چکیده:

تقویت کننده های کم نویز، یکی از اجزای اساسی گیرنده در مخابرات بیسیم محسوب می شوند. زیرا عملکرد آنها کارایی سیستم را، از نظر نویز مشخص میکند. هدف اصلی این پایان نامه، تحلیل و طراحی تقویت کننده کم نویز در باند فراپهن توسط تکنولوژی CMOS است. ابتدا عملکرد یک تقویت کننده کم نویز توزیع شده بررسی میشود. سپس مدار پیشنهادی تقویت کننده کم نویز توزیع شده، ارائه میگردد. این تقویت کننده دارای توان مصرفی 30 میلی وات، عدد نویز 3dB، گین 12dB پهنای باند 3/1 تا 10/6 گیگاهرتز میباشد.

در انتها، مدار طراحی شده دوم، که متشکل از دو طبقه گیت مشترک و کسکود میباشد، ارائه میشود. این تقویت کننده دارای توان مصرفی 16/5 میلی وات، گین 26dB، عدد نویز 3dB و پهنای باند 3/1 تا 10/6 گیگاهرتز میباشد.

تقویت کننده های کم نویز طراحی شده با استفاده از تکنولوژی 0/18CMOS میکرون با منبع تغذیه 1/8 ولت طراحی شده است.

 

 

فهرست مطالب:

چکیده............................................................................................................................................................................................. 1
مقدمه.............................................................................................................................................................................................. 2
فصل اول: سیستم های فرا پهن باند ...................................................................................................................................... 3
1-1 مقدمه .......................................................................................................................................................................... 4
2-1 تاریخچه ی سیستم های فراپهن باند ..................................................................................................................... 5
5 ................................................................................................................................................. . FCC 3-1 فرا پهن باند در
4-1 فرا پهن باند برای ارتباطات سیار ............................................................................................................................. 6
5-1 تفاوت سیستم های فرا پهن باند با سیستم های باند باریک ............................................................................... 7
6-1 چالشهای طراحی سیستم های فرا پهن باند . ...................................................................................................... 11
فصل دوم: تقویت کننده های کم نویز فراپهن باند و ساختارهای مختلف آن ............................................................... 12
1-2 مقدمه ....................................................................................................................................................................... 13
2-2 طراحی تقویت کننده کم نویز در باند فرا پهن .................................................................................................... 14
3-2 تطبیق امپدانس در تقویت کننده کم نویز فرا پهن باند ..................................................................................... 14
1-3-2 پایانه مقاومتی ............................................................................................................................................ 15
یا گیت مشترک . ......................................................................................................... 16


دانلود با لینک مستقیم


پایان نامه ارشد برق طراحی تقویت کننده کم نویز در باند فراپهن با استفاده از تکنولوژی CMOS

پایان نامه ارشد برق طراحی و شبیه سازی تقویت کننده های عملیاتی با توان و ولتاژ پایین و هدایت انتقالی ثابت

اختصاصی از سورنا فایل پایان نامه ارشد برق طراحی و شبیه سازی تقویت کننده های عملیاتی با توان و ولتاژ پایین و هدایت انتقالی ثابت دانلود با لینک مستقیم و پر سرعت .

پایان نامه ارشد برق طراحی و شبیه سازی تقویت کننده های عملیاتی با توان و ولتاژ پایین و هدایت انتقالی ثابت


پایان نامه ارشد برق طراحی و شبیه سازی تقویت کننده های عملیاتی با توان و ولتاژ پایین و هدایت انتقالی ثابت
 
 
 
 
طراحی و شبیه سازی تقویت کننده های عملیاتی با توان و ولتاژ پایین و هدایت انتقالی ثابت

DESIGN and SIMULATION OPERATIONAL

AMPLIFIERS with LOW VOLTAGE and POWER and
CONSTANT GM





فهرست مطالب:
چکیده............................................................................................................................................................................ 1
مقدمه............................................................................................................................................................................. 3
فصل اول : کلیات
1) تقویت کننده عملیاتی.............................................................................................................................. 6 -1 °
2) پارامترهای پایهای در تقویت کننده عملیاتی...................................................................................... 8 -1 °
3) کاربردهای مهم تقویت کننده عملیاتی.............................................................................................. 11 -1 °
1) تقویت کننده وارون ساز................................................................................................................... 11 -3 -1 °
2) تقویت کننده نا وارون ساز................................................................................................................ 12 -3 -1 °
4) مشخصه الکتریکی ترانزیستورهای ماسفت........................................................................................ 13 -1 °
1-4 ) وارونگی قوی........................................................................................................................................ 14 -1
2) وارونگی ضعیف................................................................................................................................... 16 -4 -1 °
1-2 ) هدایت انتقالی در وارونگی ضعیف............................................................................................. 17 -4 -1 °
3) ناحیه وارونگی متوسط..................................................................................................................... 18 -4 -1 °
5) ولتاژ تغذیه پایین، توان پایین............................................................................................................. 19 -1 °
1-5 ) چالشهای اصلی طراحی مدار آنالوگ ولتاژ پایین..................................................................... 19 -1 °
1-1-5 ) محدوده دینامیکی....................................................................................................................... 21 -1 °
2-5 ) توان پایین.......................................................................................................................................... 23 -1 °
1-2-5 ) موجبات مصرف توان در مدارات مجتمع................................................................................ 25 -1 °
فصل دوم : طبقه ورودی
1) زوج ورودی تفاضلی ماسفت.................................................................................................................. 28 -2 °
ز
30......................................................................................Rail-to-Rail 2) معرفی طبقات ورودی مکمل -2 °
و معایب آن............................................................................................. 31 R-R 3) توصیف طبقه ورودی -2 °
4) ساختارهای ورودی در محیط ولتاژ پایین.......................................................................................... 34 -2 °
1) ترانزیستورهای مد تخلیه.................................................................................................................. 34 -4 -2 °
2) ترانزیستورهای گیت شناور.............................................................................................................. 34 -4 -2 °
3) ترانزیستورهای راه اندازی شده با بدنه........................................................................................... 40 -4 -2 °
1-3 ) معایب روش راه اندازی شده با بدنه.......................................................................................... 47 -4 -2 °
4) رهیافت انتقال دهنده سطح............................................................................................................. 48 -4 -2 °
1-4 ) انتقال سیگنال................................................................................................................................ 51 -4 -2 °
1-1-4 ) انتقال سیگنال خازنی.............................................................................................................. 52 -4 -2 °
2) انتقال سطح مقاومتی.............................................................................................................. 52 -1-4-4 -2
5-4 ) ورودی شبه تفاضلی........................................................................................................................... 54 -2
6-4 ) روش خود کسکد................................................................................................................................ 55 -2
7) مدارات زیر آستانه.............................................................................................................................. 58 -4 -2 °
1-7-4-2 ) تقویت کننده توان پایین با بایاس در ناحیه زیر آستانه....................................................... 61
فصل سوم : طبقه ورودی با هدایت انتقالی ثابت
1) چرا هدایت انتقالی ثابت؟....................................................................................................................... 63 -3 °
ثابت ............................................................................................. 68 gm 2) مروری بر طراحی تکنیکهای -3 °
ثابت- جریان دنباله متغیر........................................................................................... 68 gm 1) تکنیک -2 -3 °
ثابت- انتخاب جریان مینیمم/ ماکزیمم ................................................................. 72 gm 2) تکنیک -2 -3 °
ثابت- انتقال سطح ....................................................................................................... 73 gm 3) تکنیک -2 -3 °
ثابت برای منبع تغذیه 3 ولت............................................................ 75 gm 4) ساختار طبقه ورودی -2 -3 °
76................................................................................................... Kn = Kp ، ثابت gm 5) طبقه ورودی -2 -3 °
78..................................................................................................... Kn ≠ Kp ، ثابت gm 6) طبقه ورودی -2 -3 °
ح
7) هدایت انتقالی ثابت با آینه جریان یک برابر................................................................................. 81 -2 -3 °
فصل چهارم: بهبود بهره
1) افزایش هدایت انتقالی ........................................................................................................................... 86 -4 °
2) بهبود امپدانس خروجی ........................................................................................................................ 87 -4
1) کسکد .................................................................................................................................................. 87 -2 -4 °
2) ساختارهای کسکد در طراحی ولتاژ پایین ................................................................................... 90 -2 -4 °
فصل پنجم : طبقه خروجی و جبران فرکانسی
1) ولتاژ خروجی سورس مشترک.............................................................................................................. 93 -5 °
1) طبقه خروجی سورس مشترک....................................................................................................... 93 -1 -5 °
97................................................................................................................. AB 2) طبقات خروجی کلاس -5
پیش خور............................................................................................. 101 AB 3) طبقات خروجی کلاس -5 °
پس خور............................................................................................... 106 AB 4) طبقات خروجی کلاس -5 °
5) جبران سازی فرکانسی........................................................................................................................ 109 -5 °
1) جبران میلر........................................................................................................................................ 109 -5 -5 °
2) خنثی کردن صفر میلر................................................................................................................... 113 -5 -5 °
3) جبران سازی میلر کسکد............................................................................................................... 114 -5 -5 °
4) جبران میلر نستد............................................................................................................................. 117 -5 -5 °
فصل ششم : طراحی و شبیه سازی تقویت کننده عملیاتی
با هدایت انتقالی ثابت ..................................................................... 123 Rail-to-Rail 1) طبقه ورودی -6 °
2) طبقه خروجی........................................................................................................................................ 125 -6 °
3) جبران فرکانسی..................................................................................................................................... 125 -6
4) پارامترهای طراحی............................................................................................................................... 126 -6 °
ط
5) نتایج شبیه سازی.................................................................................................................................. 127 -6 °
فصل هفتم : نتیجه گیری و پیشنهادات
° نتیجه گیری........................................................................................................................................................ 131
° پیشنهادات......................................................................................................................................................... 132
پیوست................................................................................................................................................................ 134
منابع و ماخذ
فهرست منابع لاتین.............................................................................................................................................. 135
چکیده انگلیسی


دانلود با لینک مستقیم


پایان نامه ارشد برق طراحی و شبیه سازی تقویت کننده های عملیاتی با توان و ولتاژ پایین و هدایت انتقالی ثابت

بررسی طراحی ماتریس وزن دهی در تنظیم کننده های مربعی خطی LQR مبنی بر الگوریتم تدریجی چند منظوره

اختصاصی از سورنا فایل بررسی طراحی ماتریس وزن دهی در تنظیم کننده های مربعی خطی LQR مبنی بر الگوریتم تدریجی چند منظوره دانلود با لینک مستقیم و پر سرعت .

بررسی طراحی ماتریس وزن دهی در تنظیم کننده های مربعی خطی LQR مبنی بر الگوریتم تدریجی چند منظوره


 بررسی طراحی ماتریس وزن دهی در تنظیم کننده های مربعی خطی LQR مبنی بر الگوریتم تدریجی چند منظوره

 

 

 

 

 

چکیده:

با توجه به مشکلات طراحی ماتریس های وزنی برای LQR، راهکاری مبتنی بر یک الگوریتم تکامل تدریجی چند منظوره پیشنهاد می گردد. ماتریس های وزن دهی LQR کنترل فیدبک حالت و کنترک کننده بهینه از طریق بنا کردن مدل بهینه سازی با اهداف چند منظوره و با استفاده از MOEA به دست می آید که موجب می شود سیستم کنترلی ساخته شده به صورت همزمان به معیارهای عملکرد درخواست شده نائل گردد. کنترلر برای سیستم پاندول معکوس دوبل با استفاده از روش پیشنهاد شده طراحی شده است. نتایج شبیه سازی نشان می دهد که زمان خیز و اورشوت کوچکتر از روش طراحی ماتریس وزن دهی LQR در جایابی و تعیین قطب ها دارد. بنابراین صحت روش ارائه شده مورد تائید قرار می گیرد.

مقدمه:

در میان روش های طراحی سیستم کنترل فیدبک چند متغیره، محققین روی طراحی مبتنی بر LQR بیشتر متمرکز شده اند زیرا دارا حاشیه دامنه بی نهایت و حاشیه فاز بیشتر از 60 درجه می باشد.

طراحی ماتریس های وزن دهی Q و R در توابع هزینه مربعی خطی وقتی از LQR استفاده می شود چندان ساده نیست. روش های متداول مبتنی بر تجربه های صنعتی و نیز روش سعی و خطا، پیچیدگی طراحی را به داخل پروسس می برد. بدین خاطر گاهی استفاده از الگوریتم ژنتیک و نیز استفاده از جایابی قطب برای طراحی ماتریس وزن دهی LQR پیشنهاد می گردد.

MOEA در میان روش های حل مسائل بهینه سازی با اهداف چند منظوره مزایای ویژه ای دارد و می تواند تعدادی جواب بهینه پارتو را در یک زمان به دست آورد. در سال های اخیر دو محقق چینی MOEA را بر پایه بهینه سازی با اهداف چند منظوره در حوزه کنترل به کار بردند و به نتایج تحقیقی ارزشمندی دست یافتند.

Qingliang و MOEA را برای کنترل هیبریدی H& / H2 به کار برد. که نتایجی بهتر از روش LMI به دست آورد. Zhenyu Zhou و MOEA را برای بهینه سازی پارامترهای کنترل FACTS به کار برد، که مشکل عملکرد هماهنگ تریستور جبران کننده سری کنترل شده و جبران کننده VAR ایستا را برطرف کرد. Bufu Huang و MOEA را برای بهینه سازی پارامترهای کنترل قدرت از سری وسائل الکتریکی هیبریدی به کار برد.

کارهای مفید دیگری نیز با استفاده از روش MOEA توسط A.Gambier و Low در صنایع مختلف انجام شده است.

1- ماتریس های وزن دهی Q و R در LQR

مدل خطی شده برای یک کلاس از سیستم غیرخطی چند ورودی – چند خروجی به صورت زیر است:

(x(t)=Ax(t)+Bu(t

(y(t)=Cx(t)+Du(t

که (x(t و (y(t و (u(t به ترتیب بردار حالت با بعد m، بردار خروجی با بعد r و بردار ورودی با بعد n می باشد. A و B و C و D ماتریس های حالت می باشد و تابع هزینه مربعی خطی نیز به صورت زیر می باشد:

J=&0[xT(t)Qx(t)+uT(t)Ru(t)]dt

 Q ماتریس غیرمنفی متقارن با ابعاد m*m است که ماتریس وزن دهی به متغیرهای حالت X در تابع هزینه J می باشد. R ماتریس مثبت متقارن با ابعاد n*n می باشد که ماتریس وزن دهی به متغیرهای ورودی u در تابع هزینه J می باشد.

طبق روش LQR کنترلر بهینه که مقدار J توصیف شده در فرمول (2) را مینیمم می کند به صورت معادلات زیر می باشد:

u(t)=-kx(t

k=R-1BTP

k، نرخ کنترلر بهینه فیدبک حالت است و P ماتریس مثبت متقارن است که از حل معادله جبری ریکاتی معادله زیر به دست می آید:

PA+ATP+Q-PBR-1BTP=0

در ابتدا برای طراحی کنترلر بهینه، تابع هزینه مربعی J بایستی تشکیل شود. به این معنا که ابتدا بایستی ماتریس های وزن دهی Q و R طراحی گردند. با جایگزاری حل معادله (5) در معادله (4)، نرخ فیدبک حالت بهینه k و کنترل بهینه فراهم می شود. بدیهی است وقتی از روش LQR استفاده می شود نرخ فیدبک حالت بهینه k به وسیله ماتریس های وزن دهی Q و R قطعی می شود. بعلاوه موقعیت قطب های سیستم حلقه بسته و حیطه پاسخ زمانی تابع هزینه اساسا تحت تاثیر k می باشد. پس انتخاب ماتریس های وزن دهی Q و R در J نقشی مهم در فرآیند طراحی کنترلر بهینه متناظر ایفا می کند.

 

 

 

 


دانلود با لینک مستقیم


بررسی طراحی ماتریس وزن دهی در تنظیم کننده های مربعی خطی LQR مبنی بر الگوریتم تدریجی چند منظوره

پایان نامه ارشد برق تحلیل و طراحی کنترل کننده های فازی با استفاده از روش LMI برای سیستم های غیرخطی با عدم قطعیت پارامترها

اختصاصی از سورنا فایل پایان نامه ارشد برق تحلیل و طراحی کنترل کننده های فازی با استفاده از روش LMI برای سیستم های غیرخطی با عدم قطعیت پارامترها دانلود با لینک مستقیم و پر سرعت .

پایان نامه ارشد برق تحلیل و طراحی کنترل کننده های فازی با استفاده از روش LMI برای سیستم های غیرخطی با عدم قطعیت پارامترها


پایان نامه ارشد برق تحلیل و طراحی کنترل کننده های فازی با استفاده از روش LMI برای سیستم های غیرخطی با عدم قطعیت پارامترها

 

 

 

چکیده:

در این پایان نامه ابتدا مقدمه ای از سیستم های فازی T-Sبیان می کنیم و نحوه ساختن یک مدل فازی T-S برای یک سیستم غیرخطی را بررسی می کنیم. سپس به بررسی مدل سازی تقریبی فازی T-S از سیستم اصلی می پردازیم. در ادامه برای سیستم فازی T-S یک کنترل کننده فازی PDC طراحی خواهیم کرد. بعد از آن به نحوه طراحی انواع PDC پایدار کننده حلقه بسته و با استفاده از شروط مختلف پایداری و ورودی خروجی خواهیم پرداخت. در بخش بعد نیز به طراحی مشاهده گر فازی می پردازیم. دست آخر هم کنترل کننده PDC که شروط بهینه گی و مقاومت را برآورده می کند را طراحی خواهیم کرد. در آخر هر فصل نیز برای بهتر جا افتادن مسأله مورد بحث، یک مثال شبیه سازی شده را خواهیم آورد که در پایان نیز نتایج آن مورد بررسی و تجزیه و تحلیل قرار گرفته اند.

مقدمه:

امروزه سیستم های فازی کاربرد گسترده ای پیدا کرده اند. کاربرد سیستم های فازی حتی به وسایل خانگی مانند یخچال، جاروبرقی و غیره نیز راه پیدا کرده است. معمولا دو نوع سیستم فازی داریم، سیستم های فازی غیرمبتنی بر مدل و سیستم های فازی مبتنی بر مدل. سیستم های فازی غیر مبتنی بر مدل برای سیستم هائی به کار می روند که مدل دقیقی از سیستم تحت کنترل نداریم و یا مدل سازی آن مشکل است. وقتی از سیستم تحت کنترل یک مدل ریاضی در دست داریم می توانیم از روش های مبتنی بر مدل استفاده کنیم. سیستم های فازی T-S معمولا مبتنی بر مدل هستند. در این پایان نامه عسی داریم با استفاده از مدل فازی T-S، برای سیستم های غیرخطی با عدم قطعیت پارامترها یک کنترل کننده PDC پایدار طراحی کنیم.

فصل اول

مدل فازی تاکاگی – سوگنو و جبران سازی گسترده موازی

سال های اخیر شاهد رشد سریع محبوبیت سیستم های کنترل فازی در کاربردهای مهندسی بوده است. در این تحقیق ما یک محدوده گسترده ابزارهای تحلیل و طراحی سیستم های کنترل فازی را برای حل مسائل مهندسی، مقدمه سازی می کنیم. این فصل مفاهیم اساسی تحلیل و روندهای طراحی در این روش را معرفی می کند.

این فصل با مقدمه ای بر مدل فازی T-S آغاز می شود و سپس با روندهای ساختن این مدل ها، دنبال می شود. آنگاه طراحی یک کنترل کننده فازی براساس مدل با استفاده از «جبران سازی گسترده موازی» شرح داده شده است. ایده اصلی طراحی کنترل کننده، استنتاج کردن هر قاعده کنترل برای جبران هر قاعده سیستم فازی است. روند طراحی به طور مفهومی، ساده و طبیعی است. در این فصل نشان داده شده که تحلیل های پایداری و مسائل طراحی کنترل، می توانند به مسائل LMI کاهش پیدا کنند. روش طراحی، به وسیله کاربرد آن در مساله متعادل کردن یک آونگ وارونه روی گاری، شرح داده شده است.

تمرکز این فصل روی مفاهیم اساسی روش های تحلیل پایداری از طریق LMI است. بیشتر موارد پیشرفته در تحلیل و طراحی توسط LMI در فصل بعد خواهد آمد.

1-1- مدل فازی تاکاگی – سوگنو

روند طراحی، با شرح یک فرآیند غیرخطی داده شده به وسیله مدل فازی T-S آغاز می شود. مدل فازی پیشنهادی توسط تاکاگی و سوگنو به وسیله قواعد اگر – آنگاه فازی شرح داده شده است که روابط ورودی – خروجی خطی محلی یک سیستم غیرخطی را نشان می دهد. خاصیت اصلی مدل فازی T-S، هر قاعده بیان دینامیک های محلی به وسیله یک مدل خطی سیستم است. مدل فازی نهائی سیستم به وسیله ترکیب فازی مدل های خطی سیستم به دست آمده است. خواننده خواهد یافت که بعضی از سیستم های دینامیکی غیرخطی می توانند توسط مدل فازی T-S نشان داده شوند. در حقیقت، اثبات می شود که مدل های فازی T-S تقریب های عمومی هستند.

تعداد صفحه : 159

 


دانلود با لینک مستقیم


پایان نامه ارشد برق تحلیل و طراحی کنترل کننده های فازی با استفاده از روش LMI برای سیستم های غیرخطی با عدم قطعیت پارامترها