سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله فیوز های الکتریکی

اختصاصی از سورنا فایل مقاله فیوز های الکتریکی دانلود با لینک مستقیم و پر سرعت .

مقاله فیوز های الکتریکی


مقاله فیوز های الکتریکی

لینک پرداخت و دانلود در "پایین مطلب"

 

فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات:92

مقدمه

فیوز وسیله ای است جهت محافظت از مدارهای الکتریکی در مقابل بروز اشکالات ناشی از عبور جریان اضافی در آن، که به وسیله ذوب شدن و قطع المنت داخلی آن که معمولاً از جنس نقره یا مس می باشد مدار باز شده و جریان بصورت آنی قطع می گردد.

شکل 1- اجزاء تشکیل دهنده یک نوع فیوز ولتاژ پایین را نشان می دهد که ممکن است در آن بیش از یک المنت به صورت موازی در داخل محفظه ای که از ماسه کوارتز پودر شده و یا پودر چینی پر شده است وجود داشته باشد. بدنة فیوز معمولاً از جنس سرامیک و گاهی ممکن است از فایبر گلاس آمیخته با رزین ساخته شود. در هر یک از دو انتهای بدنه، یک کلاهک برنجی پرس شده وجود دارد که المنتهای داخلی به آن متصل به کلاهکهای آن انجام می شود. که متناسب با کاربرد فیوز دارای انواع مختلفی است.

هنگامیکه جریان اضافه برای مدت زمان کافی از مداری عبور کند به شرح زیر به تجهیزات آن مدار صدمه مدار می سازد.

الف- حرارت اضافه یا گرمای زیاد به بستگی به مربع مقدار مؤثر جریان عبوری از مدار دارد که در اثر آن ممکن است به واسطه کار در درجه حرارت بالا، به عایقهای مدار صدمه جبران ناپذیری وارد شود. اگر جریان به قدر کافی زیاد باشد. ممکن است هادیهای فلزی مدار نیز ذوب شوند.

ب- نیروهای الکترو مغناطیسی که متناسب با مربع پیک جریان هستند. تحت شرایط خطای اتصال کوتاه سنگین، ممکن است شکست مکانیکی تجهیزات اتفاق افتد، بویژه اگر درجه حرارت نیز بالا باشد که در این صورت چون مقاومت مکانیکی مواد عمدتاً با افزایش درجه حرارت کاهش می یابد اثرات مخربتری به وجود می آید.

بعضی قطعات مانند نیمه هادیهای قدرت بالا، به انرژی آزاد شده در قطعه در خلال یک پالس کوتاه مدت حساس هستند. اگر مقاومت اهمی قطعه ثابت انتخاب شود در این صورت انرژی آزاد شده در یک پالس با مدت T متناسب با  خواهد بود. این انتگرال عموماُ به عنوان « i2  t» پالس شناخته می شود.

طرحهای مختلف فیوز برای حفاظت انواع مختلف تجهیزات الکتریکی در مقابل اثرات جریان اضافی و یا انرژی اضافی فوق الذکر وجود دارند که از آنجائیکه از بحث این کتاب خارج می باشد در مورد آنها صحبت نمی گردد. خوانندگان عزیز می توانند به بروشروهای تبلیغاتی شرکت فیوزسازی مراجعه نمایند.

نمودارهای عمومی

به عنان اولین قدم در درک طریقه ای که یک فیوز عمل می کند( با بعضی اوقات می سوزد)، نمودارهای عمومی جریان، ولتاژ و درجه حرارت فیوز در طی یک عمل قطع نشان داده شده در شکل های (2)، (2-3)،(2-4)،(2-5) را در نظر بگیرید.

جریان انتظاری نشان داده شده روی این شکلها جریانی است که در مدار جاری می شد اگر فیوز عمل نمی کرد و همچنین امپدانس المنت فیوز صفر در نظر گرفته می شد. بعد از وقوع یک خطا که باعث عبور جریان و بدنبال آن باعث عملکرد دقیق می گردد، دو ناحیه متمایز زمانی وجود دارد. یکی زمان قبل از ایجاد قوس و دیگری زمان برقراری قوس است.

دراثنای زمان قبل از قوس یا به عبارتی پیش قوس ( زمان ذوب شدن) درجه حرارت المنت فیوز آنقدر افزایش می یابد تا اینکه نقطه ذوب فلز در یک یا چند نقطه از طول المنت فرا می رسد. سپس المنت فیوز قطع شده و بین دو انتهای ذوب شدة المنت که پاره شده است قوس الکتریکی برقرار می گردد. در لحظه برقراری قوس یک افزایش قابل ملاحظه در ولتاژ دو سر فیوز ایجاد می گردد که دلیل آن بعداً توضیح داده می شود. در اثنای زمان قبل از قوس، وقتی که جریان مدار بسیار زیاد است، یک افزایش جزئی در ولتاژ دو سر فیوز مشاهده می شود، که این ناشی از مقاومت اهمی المنت فیوز است که با درجه حرارت افزایش یافته است.

جرقه، در خلال و در فاصلة زمانی برقراری قوس ادامه می یابد تا سرانجام قطع نهائی جریان فرا می رسد و قوس خاموش می گردد.

شکل های (2-2) و (2-4) نمودارهایی را در شرایط اتصال کوتاه برای مدارات    dc و ac در یک حالت خاص نمایش می دهند. چنانکه از این اشکال دیده می شود فیوز جریان خطای مورد انتظار را قطع می کند یعنی جریان خطا را در یک مقدار کمتر از پیک جریان انتظاری محدود می نماید. این محدودیت جریان، یکی از خواص مهم فیوزها ست که اثرات حرارتی و الکترو مکانیکی را بطور جدی و موثر کاهش می دهد. در این شرایط اندازه زمان قبل از قوس و قوس تقریباً مساوی می باشند.

شکلهای ـ2-3) و (2-5) مجدداً نمودارهایی را برای مدارات  dcو ac نشان می دهند در این موارد جریان های انتظاری نسبتاً پایین هستند( همانند جریان اضافه بار) که منجر به گرم شدن آهسته وتدریجی فیوز می شود. در این حالت زمان قبل ازقوس نسبتاً طولانی و شاید هم چند ساعته است ولی زمان جرقه در مقایسه با آن بسیار ناچیز است. شکل (2-5) نشان می دهد که قبل از اینکه جریان کاملاً متوقف گردد جریان مدار ممکن است چندین نیم سیکل  ac را طی نماید.

شکل

بنابراین به نظر می رسد که در بعضی از موارد خاموش شدن قوس موقعی که جریان پایین است مشکل تر از وقتی است که جریان زیادی خصوصاً در مواقع اتصال کوتاه از مدار عبور می نماید. دلیل این امر در قسمتهای بعدی توضیح داده می شود.

توزیع گرما و حرارت در المنت فیوز

رفتار و عملکرد اشاره شده فوق الذکر دقیقاً بستگی به توزیع گرما در طول المنت قبل از ذوب شدن دارد.

همچنانکه از روی شکل مشخص است درجه حرارت المنت در لحظات اولیه عبور جریان در سرتاسر طول المنت و در تمام آن بطور یکنواخت پخش می شود زیرا که زمان کافی جهت افت و اتلاف حرارت در اثر انتقال به کلاهکهای در سر فیوز وجود ندارد. با پیشرفت زمان منحنی توزیع گرما تقریباً به صورت بیضی درآمده و گرمترین نقطه در وسط المنت خواهد بود.

این بدان معنی است که در اتصال کوتاههای شدید که دامنه جریان بسیار زیاد است، درجه حرارت در زمان ذوب بطور یکنواخت در سرتاسر طول المنت فیوز توزیع می گردد و در نتیجه المنت سریعاً ذوب شده و قوسهای متعددی ایجاد می گردد. بالعکس اگر جریان کم باشد زمان قبل از قوس افزایش یافته و درجه حرارت وسط المنت ایجاد می گردد. بنابراین توزیع گرما در المنت درست قبل از ذوب آن نه تنها مشخص می کند که آیا قوس تکی یا چند تائی است بلکه تأثیر عمقی دررفتار و عملکرد فیوز در فاصله زمانی قوس دارد.

جریان نامی و حداقل جریان ذوب شدن فیوز

جریان نامی تعیین شده برای یک فیوز فرقی با میزان جریان تعیین شده بری سایر تجهیزات الکتریکی ندارد. به عبارت دیگر جریان نامی، جریانی است که توسط کمپانی سازندة فیوز تعیین گردیده که فیوز می تواند تحت شرایط کاری خود بطور پیوسته و مداوم و بدون سوختن، آن را از خود عبور دهد. جریان نامی فیوز توسط حداکثر درجه حرارتی که قطعات فیوز( خصوصاً المن فیوز) مجاز است بطور مداوم و پیوسته در آن کار کند تعیین می شود.


دانلود با لینک مستقیم


مقاله فیوز های الکتریکی

مقاله انواع موتورهای الکتریکی و کاربرد آنها

اختصاصی از سورنا فایل مقاله انواع موتورهای الکتریکی و کاربرد آنها دانلود با لینک مستقیم و پر سرعت .

مقاله انواع موتورهای الکتریکی و کاربرد آنها


مقاله انواع موتورهای الکتریکی و کاربرد آنها

لینک پرداخت و دانلود در "پایین مطلب"

 

فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات:45

انواع موتورهای متناوب :

 چون مقدار زیادی از قدرت الکتریکی تولید شده بصورت متناوب میباشد ، بیشتر موتورها طوری طرح شده اند که با جریان متناوب کار کنند . این موتورها در بیشتر موارد میتوانند دو برابر موتورهای جریان مستقیم کارکنن و زحمت آنها در موقع کارکردن کمتر است ، چون در موتورهای جریان مستقیم همیشه اشکالاتی در کموتاسیون آنها ایجاد میشود که مستلزم عوض کردن ذغالها یا زغال گیرها و یا تراشیدن کلکتور است . بعضی موتورهای جریان متناوب با موتورهای جریان مستقیم کاملا فرق دارند ، بطوریکه حتی در آنها از رینگ های لغزنده هم استفاده نمیشود و برای مدت طولانی بدون ایجاد درد سر کار میکنند .

موتورهای جریان متناوب ، عملا برای کارهایی که احتیاج به سرعت ثابت دارند ، مناسب هستند . چون سرعت آنها به فرکانس جریان متناوب اعمال شده به سر های موتور ، بستگی دارد . اما بعضی از آنها طوری طرح شده اند که در حدود معین ، دارای سرعت متغیر باشد .

موتورهای جریان متناوب میتوانند طوری طرح شوند که با منبع جریان متناوب یک فاز یا چند فاز کار کنند . ولی چه موتور یک فاز باشد و یا چند فاز ، روی اصول یکسانی کار میکنند ، اصول مزبور عبارتست از این که جریان متناوب اعمال شده به موتور یک میدان مغناطیسی گردانی تولید میکند و این میدان باعث میشود که روتور بگردد .

 موتورهای جریان متناوب عموما به دو نوع تقسیم بندی می شوند :

  • موتورهای سنگرون
  • موتورهای القایی .

موتور سنکرون در واقع یک آلترناتور است که بعنوان موتور کار میکند و در آن جریان متناوب به استاتور و جریان مستقیم به روتور اعمال میشود موتورهایی القایی شبیه به موتورهای سنگرون هستند با این تفاوت که در آنها روتور به و منبع قدرت وصل میشود .

از دو نوع موتورهای جریان متناوب ذکر شده ، موتورهای القائی به مراتب خیلی بیشتر از موتورهای سنکرون مورد استفاده قرار میگیرند . 

 

میدان گردان :

همانطور که گفته شد میدان گردانی که از اعمال جریان متناوب به موتور ، تولید میگردد باعث گردش روتور میشود . اما قبل از اینکه یاد بگیرید چگونه یک میدان گردان باعث حرکت روتور میشود ، باید اول درک کنید که چگونه یک میدان گردان باعث حرکت روتور میشود ، باید اول درک کنید که چگونه میتوان میدان مغناطیسی  گردان تولید کرد . دیاگرام زیر، یک استارتور سه فازه را نشان میدهد که جریان متناوب سه فاز آن اعمال شده است ، همانطور که نشان داده است ، سهم پیچها بصورت دلتا به یکدیگر اتصال دارند و کلاف هر یک از سیم پیچها بصورت دلتا به یکدیگر اتصال دارند و دو کلاف هر یک از سیم پیچها در یک جهت سیم پیچی شده است .

در هر لحظه ، میدان مغناطیسی تولید شده بوسیله هر یک از سیم پیچها بستگی دارد به جریانی که از آن میگذرد . اگر جریان صفر باشد ،میدان مغناطیسی هم صفر خواهد بود اگر جریان ماکزیمم باشد ، میدان مغناطیسی هم ماکزیمم خواهدبود و چون جریان فازها 120 درجه با هم اختلاف فاز دارند ، میدان های مغناطیسی تولید شده هم 120 درجه با هم اختلاف فاز خواهند داشت . حال سه میدان مغناطیسی مزبور که در هر لحظه وجود دارند ، با هم ترکیب میشوند و یک میدان منتجه تولید میکنند که روی روتور عمل میکند . در آینده خواهید دید که هر لحظه میدان های مغناطیسی ترکیب میشوند ، میدان مغناطیسی منتجه پیوسته در حال حرکت است و بعد از هر سیکل کامل جریان متناوب ، میدان مغناطیسی مزبور هم با اندازه 360 درجه یا یک دور دوران میکنند.

دیاگرام زیر ، شکل موج جریانهای اعمال شده به استاتور سه فازه مزبور را نشان میدهد . این شکل موج ها 120 درجه با هم اختلاف فاز دارند . شکل موجهای مزبور میتوانند نشان دهنده سه میدان مغناطیسی باشد که بوسیله هر یک از سیم پیچ تولید میشود . به شکل موجها وابسته شده است که مشابه فاز مربوطه میباشد با استفاده از شکل موجها ، میتوانیم در هر 6/1 دور ( معادل 60 درجه ) میدانهای مغناطیسی تولید شده را با هم ترکیب کنیم تا جهت میدان مغناطیسی منتجه پیدا شود. در نقطه 1 ( شکل موج C مثبت وشکل B منفی است .به عبارت دیگر جریانهای گذرنده از سیم پیچ های فاز C,B غیر هم جهت هستند و بنابراین جهت میدانهای مغناطیسی ناشی از C,B هم غیر هم جهت هستند . در بالای نقطه 1 جهت میدان بطرز ساده ای نشان داده شده است . توجه داشته باشید که B1 قطب شمال و B قطب جنوب است همین ترتیب C قطب شمال و C1 قطب جنوب است . چون درنقطه1 هیچ جریانی از سیم پیچ فاز نمیگذرد ، میدان مغناطیسی آن صفر است .

نقطه 2یعنی 60 درجه بعد ، شکل موج جریانهای فازهای B,A مساوی و مخالف یکدیگر و شکل موج C صفر است و بنابراین میدان مغناطیسی منتجه باندازه60 درجه دیگر گردیده است . درنقطه 3 ، شکل موج B صفر است و میدان مغناطیسی منتجه با اندازه 60 درجه دیگر میگرد و به همین ترتیب از نقطه 1تا نقطه 7 ( مشابه یک جریان متناوب 9 میدان مغناطیسی منتجه باندازه یک دور کامل میگردد .

در نتیجه اعمال جریان متناوب سه فاز سه سیم پیچی که بطور قرینه در اطراف اسناتور جای گرفته باشند باعث ایجاد یک میدان مغناطیسی گردان میشود که این میدان باعث دوران روتور میشود .

 

موتور سنکرون :

علت اینکه به این نوع موتورهای سنکرون میگویند این است که روتور آن  با میدان مغناطیسی گردان تولید شده در استاتور همگام است . ساختمان این موتورها اساس شبیه به آلترناتور قطب برجسته است . میدانید که اعمال جریان سه فاز به استاتور یک میدان مغناطیسی گردان در اطراف روتور تولید میکند . اما چون روتوربه یک منبع جریان مستقیم وصل است مانند یک آهنربای میله ای عمل خواهد کرد . از قبل میدانید که اگر یک آهنربای میله ای بطور معلق در یک میدان مغناطیسی قرار بگیرد، آنقدر دوران خواهد کرد تا در امتداد آن قرار بگیرد .


دانلود با لینک مستقیم


مقاله انواع موتورهای الکتریکی و کاربرد آنها

دانلود برق و الکتریسیته 58 ص

اختصاصی از سورنا فایل دانلود برق و الکتریسیته 58 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 55

 

توان الکتریکی که اغلب به عنوان برق یا الکتریسیته شناخته می شود، شامل تولید و ارایه انرژی الکتریکی به میزان کافی برای راه اندازی لوازم خانگی، تجهیزات اداری، دستگاه های صنعتی و فراهم آوردن انرژی کافی برای روشنایی، پخت و پز، گرمای خانگی و صنعتی و فرایندهای صنعتی بکار می رود.

تاریخچه اگرچه که الکتریسته به عنوان نتیجه واکنش شیمیایی ای که در یک پیل الکترولیک از زمانی که الساندرو ولتا در سال1800م این آزمایش را انجام داد، شناخته می شده است، اما تولید آن به این روش گران بوده و هست. در سال 1831م، میشل فارادی ماشینی ابداع کرد که از حرکت چرخشی تولید الکتریسته می کرد، اما حدود پنجاه سال طول کشید تا این فن آوری از نظر اقتصادی مقرون به صرفه شود. در سال 1878م، توماس ادیسون جایگزین عملی تجاری ای را برای روشنایی های گازی و سیستم های حرارتی ایجاد کرد و به فروش رساند که از الکتریسته جریان مستقیمی استفاده می کرد که بطور منطقه ای تولید و توزیع شده بود، استفاده می کرد. در سیستم جریان مستقیم ادیسون، ایستگاه های تولید توان اضافی می بایست نصب می شدند. بدلیل اینکه ادیسون قادر نبود سیستمی را تولید کند که به ژنراتورهای چندگانه اجازه بدهد که به یکدیگر متصل شوند، گسترش سیستم او نیاز داشت که تمامی ایستگاه های تولید جدید مورد نیاز ساخته شوند. نیاز به نیروگاه های اضافی ابتدا توسط قانون اهم بیان شده است: بدلیل اینکه تلفات با مربع جریان یا بار و با خود مقاومت متناسب است، بکار بردن کابل های طولانی در سیستم ادیسون به مفهوم داشتن ولتاژهای خطرناک در برخی نقاط یا کابل های بزرگ و گران قیمت و یا هر دوی اینها بود.

نیکولا تسلا که مدت کوتاهی برای ادیسون کار می کرد و تئوری الکتریسته را بگونه ای درک کرده بود که ادیسون درک نکرده بود، سیستم جایگزینی را ابداع کرد که از جریان متناوب استفاده می کرد. تسلا بیان داشت که دو برابر کردن ولتاژ جریان را نصف می کند و منجر به کاهش تلفات به میزان 4/3 می شود و تنها یک سیستم جریان متناوب اجازه انتقال بین سطوح ولتاژ را در قسمت های مختلف آن سیستم ممکن می سازد. او به توسعه و تکمیل تئوری کلی سیستم اش ادامه داد و جایگزین تئوری و عملی ای را برای تمامی ابزارهای جریان مستقیم آن زمان ابداع کرد و ایده های بدیعش را در سال 1887م در 30 حق انحصاری اختراع به ثبت رساند.

در سال 1888م کار تسلا مورد توجه جرج وستینگهاوس که حق انحصاری اختراع یک ترانسفورماتور را در اختیار داشت و یک کارخانه روشنایی را از سال 1886م در گریت بارینگتون، ماساچوست راه اندازی کرده بود، قرار گرفت. اگرچه که سیستم وستینگهاوس می توانست از روشنایی های ادیسون استفاده کند و دارای گرم کننده نیز بود، اما این سیستم دارای موتور نبود. توسط تسلا و اختراع ثبت شده اش، وستینگهاوس یک سیستم قدرت برای یک معدن طلا در تلورید، کلورادو در سال 1891 ساخت که دارای یک ژنراتور آبی 100 اسب بخار(75 کیلو وات) بود که یک موتور 100 اسب بخار (75 کیلو وات) را در آنسوی خط انتقالی به فاصله 5/2 مایل (4 کیلومتر) تغذیه می کرد. سپس در یک قرارداد با جنرال الکتریک که ادیسون مجبور به فروش آن شده بود، شرکت وستینگهاوس اقدام به ساخت یک نیرگاه در نیاگارا فالس کرد که دارای سه ژنراتور تسلای 5000 اسب بخار بود که الکتریسته را به یک کوره ذوب آلومینیوم در نیاگارا ، نیویورک و به شهر بوفالو، نیویورک به فاصله 22 مایل (35 کیلومتر) انتقال می داد. نیروگاه نیاگارا در 20 آوریل 1895م شروع به کار کرد.

انرژی الکتریکی در حال حاضر

امروزه سیستم انرژی الکتریکی جریان متناوب تسلا کماکان مهمترین ابزار ارایه انرژی الکتریکی به مصرف کنندگان در سراسر جهان است. با وجود جریان مستقیم ولتاژ بالا (HVDC) برای ارسال مقادیر عظیم الکتریسته در طول فواصل بلند بکار می رود، اما قسمت اعظم تولید الکتریسته، انتقال توان الکتریکی، توزیع الکتریسته و داد و ستد الکتریسته با استفاده از جریان متناوب محقق می شود.

در بسیاری از کشورها شرکت های توان الکتریکی کلیه زیرساخت ها را از نیروگاه ها تا زیرساخت های انتقال و توزیع در اختیار دارند. به همین علت، توان الکتریکی به عنوان یک حق انحصاری طبیعی در نظر گرفته می شود. صنعت عموماْ به شدت با کنترل قیمت ها کنترل می شود و معمولا مالکیت و عملکرد آن در دست دولت است. در برخی کشورها بازارهای الکتریسته وسیع با تولید کننده ها و فروشندگان الکتریسته، الکتریسته را مانند پول نقد و سهام معامله می کنند.

انتقال توان الکتریکی دومین فرایند ارائه الکتریسیته به مصرف کننده هاست. الکتریسیته توسط نیروگاه های برق تولید می شود و سپس توسط فروشنده ها به مصرف کنندگان نهایی به عنوان یک کالا فروخته می شود. انتقال توان الکتریکی و شبکه توزیع الکتریسیته اجازه ارائه الکتریسیته تولید شده را به مصرف کننده ها می دهد. فرایند صنعتی شدن سریع قرن 20 ام خطوط و شبکه های انتقال را تبدیل به بخش مهمی از زیر ساخت های اقتصادی در کشورهای صنعتی، کرد. شبکه های برق امکانات تولید زیادی را ممکن می سازند، نظیر سدهای هیدرو الکتریک، نیروگاه های سوخت فسیلی، نیروگاه های هسته ای و ... که توسط سازمان های بهره برداری خصوصی و عمومی، برای تولید مقادیر بزرگی از انرژی و ارائه آن به شبکه های توزیع برای تحویل به مصرف کننده های خریدار، گردانده می شوند. معمولاً الکتریسیته را در طول فواصل بلند از طریق ترکیبی از خطوط انتقال توان هوایی (مانند آنچه در شکل مشاهده می شود) یا کابل های زیر زمینی ارسال می کنند. اولین ژنراتور هیدروالکتریک بزرگ در آبشار نیاگارای ایالات متحده (که تحت دیدگاه فنی نیکلا تسلا ساخته و نصب شده بود) نصب شد و از طریق خطوط انتقال، الکتریسیته را برای بوفالو، نیویورک فراهم ساخت.

ورودی شبکه

یک شبکه انتقال از: نیروگاه های برق، پست های برق و مدارات انتقال ساخته شده است. معمولاً برق از طریق یک جریان متناوب سه فاز انتقال می یابد. در نیروگاه ها، برق را در سطح ولتاژی نسبتاً پایین در حدود 10 تا 15 کیلو ولت تولید می کنند، سپس توسط ترانسفورماتور نیروگاه، آن را به یک ولتاژ بالا (220 تا 440 کیلو ولت) جریان متناوب می رسانند تا آن را به یک پست برق که نقطه خروجی شبکه است و در فواصل دور قرار دارد، انتقال دهند.

تلفات

به منظور کاهش درصد تلفات توان لازم است که الکتریسیته را در ولتاژهای بالا انتقال دهیم. هرچه که ولتاژ بالاتر باشد جریان کمتر خواهد بود که این امر اندازه ی کابل مورد نیاز و میزان انرژی تلف شده را کاهش می دهد. انتقال در طول خطوط بلند معمولاً در ولتاژهای 100 کیلو ولت و بالاتر صورت می گیرد. تلفات انتقال و توزیع در ایالات متحده در سال 2003م 2/7 و در انگلستان در سال 1998م 4/7 درصد تخمین زده شده است.

وقتی لازم است که توان را در طول خطوط بسیار بلند انتقال دهیم، استفاده از جریان مستقیم برای انتقال، به جای جریان متناوب موثرتر ( و بنابراین اقتصادی تر) است. به دلیل اینکه این امر نیازمند هزینه کردن پول بسیار زیادی بر روی مبدل های توان AC/DC است، از این روش تنها در هنگام انتقال مقادیر بسیار زیاد توان در طول خطوط بسیار بلند یا برای موقعیت های خاص، نظیر یک کابل زیر دریا انجام می شود.

همچنین به دلیل طبیعت بارهایی که به شبکه وصل می شوند، توان از بین می رود؛ این تلفات با نام ضریب توان بیان می شود. اگر ضریب توان کم باشد بخش زیادی از توان هدر می رود. شرکت های بهره بردار تلاش شایان توجهی را برای حفظ یک ضریب توان خوب صرف می کنند.

خروجی شبکه


دانلود با لینک مستقیم


دانلود برق و الکتریسیته 58 ص

دانلود الترون14 ص

اختصاصی از سورنا فایل دانلود الترون14 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

بار الکتریکی: در شرایط عادی تعداد پروتن ها و الکترون های هر جسم با هم برابر هستند ، اگر تعداد الکترون های جسمی از پروتن ها بیشتر شود جسم دارای بار منفی خواهد شد و اگر تعداد الکترون های آن کمتر از حد معمول باشد جسم دارای بار مثبت است .

/ / e=p

نکته: اجسام با بارهای هم نام همدیگر را دفع و بارهای غیر همنام همدیگر را جذب می کنند . بار مثبت را با Q نمایش داده و بار متغیر بازمان یا لحظه ای را با g(t) نمایش می دهیم . واحد بار الکتریکی کولن است که با C نمایش داده می شود . کولن مقدار باریست که در مدت یک ثانیه از مقطع سیم شارش پیدا می کند .

1s Q= it

جریان الکتریکی : ناشی از حرکت دسته جمعی الکترون هاست که آن را با I برای جریان های ثابت و i برای جریان _های لحظه ای نمایش می دهند . می توان گفت :

q(t)=t2

آمپر : یک آمپر انتقال بار یک کولنی در واحد زمان خواهد بود .

انواع جریان :

( Direct current ) DC : جریان ثابت DC : ناشی از جریان الکترون در یک هادی در جهتی

انواع انرژی ثابت است و مقدار آن نیز نسبت به زمان ثابت است .

( Alternative current) AC حرکت الکترون در این جریان در یک جهت نبوده و مقدار آن

نیز نسبت به زمان متغیر است .

ولتاژ : اگر دو جسم مختلف البار توسط یک رشته سیم به یکدیگر متصل شوند الکترون های اضافی از یک جسم باردار منفی به یک جسم باردار مثبت انتقال می یابد که این انتقال الکترون ها به دلیل وجود اختلاف پتانسیل بین دو جسم باردار است . نسبت انرژی که بار الکتریکی Q در حرکت خود از نقطه A تا B از دست می دهد را ولتاژ الکتریکی آن بار تعریف می کنیم :

 

انرژی : کار انجام شده یا انرژی تبدیل شده در یک مدار الکتریکی برابر است با حاصلضرب ولتاژ در بار الکتریکی

W=QV

توان : سرعت انجام کار را توان نامیده و با فرمول های زیر نشان می دهند .

 

W=QV P=Vi

منبع : منظور از منبع وسیله ایست که بتواند انرژی الکتریکی را به غیر الکتریکی و بالعکس تغییر نماید :

مثال: باطری که انرژی شیمیایی را به انرژی الکتریکی تبدیل می کند پس یک منبع است.

انواع منابع:

منبع ولتاژ مستقل : منبعی که ولتاژ دو سر آن مستقل از جریان عبوری از آن منبع باشد که شکل مداری این منبع به صورت زیر است :

 

منبع جریان مستقل : منبعی است که جریان عبوری از آن همواره مستقل از دو سر آن باشد که شکل مداری آن به صورت زیر است :

 

منبع ولتاژ وابسته : منبعی است که ولتاژ آن به ولتاژ یا جریان قسمتی دیگر از مدار وابسته است و نماد مداری آن به صورت زیر است :

VS=∝i یا VS=βv

منبع جریان وابسته : منبعی است که جریان عبوری از آن به ولتاژ یا جریان قسمتی دیگر از مدار وابسته باشد که نماد مداری آن به صورت زیر است .

is=∝v

منابع وابسته عملا و به صورت فیزیکی موجود نیستند و تنها جهت شبیه سازی برخی عناصر الکتریکی و الکترونی کاربرد دارد .

مقاومت : مقاومت یا عکس العمل جسم هادی در برابر جریان الکترون ها را مقاومت الکتریکی گویند که نماد مداری آن به شکل زیر است :

 

V=iR →R =

رسانایی چیست ؟ عکس مقاومت ( مهو ) G =

توان تلف شده در دو سر مقاومت :

P=Vi ⇒P=iri ⇒ P=

یا P=V()⇒ P=

تعریف گره : محل اتصال دو یا چند عنصر الکتریکی به یکدیگر را گره می گویند .

تعریف حلقه ( بسته ) : مسیری از یک مدار را بسته گویند در صورتیکه اگر از گره ای دلخواه روی مسیر شروع به حرکت نماییم و از عناصر عبور کنیم بدون اینکه از هیچ گره ای بیش از یکبار بگذریم دوباره به گره آغازین باز گردیم .

KCL : جمع جبری جریان های عبوری از یک گره برابر صفر است .

قوانین کیرشهف : =0 k i1 + i2 –i3 =0 kcL= i1 + i2 = i3 ⇒

KVL : جمع جبری ولتاژ ها در یک مدار بسته برابر صفر است .

V1+V2+VS=0

مثال : در مدار شکل زیر مقدار ولتاژ هر مقاومت را تعیین نمایید ؟


دانلود با لینک مستقیم


دانلود الترون14 ص