سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سورنا فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پژوهشی در مورد سیستمهای طیف گسترده

اختصاصی از سورنا فایل پژوهشی در مورد سیستمهای طیف گسترده دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 50

 

فصل اول

تاریخچه و مقدمه

طراحان سیستمهای مخاراتی درگذشته و حال همواره به دنبال دستیابی به تکنیکهای مدولاسیون ودمدولاسیونی هستند که نیازهای مخابراتی و ملاحظاتی مورد نظر آنهارا به بهترین صورت مرتفع سازند. اکثر این تکنیکها سعی در بهینه سازی استفاده از یک یا هر دو پارامتر مخابرات یعنی قدرت و پهنای باند داشته، هدف اصلی آنها کم کردن احتمال خطای بین در ارسال سیگنال از یک محل به محل دیگر، با فرض حضور نویز گوسی سفید جمع شونده می‎باشد.

با این وجود گاهی نیاز به تکنیکهای مدولاسیونی که نیازهایی غیر از موارد مذکور را برآورده کنند به چشم می خورد. به عنوان مثال علاوه برکانالهای AWGN کانالهای دیگری وجود دارند که از این مدل تبعیت نمی کنند. مثلا یک سیستم مخابرات نظامی که تحت تاثیر تداخل عمدی «اختلال» قرار می گیرد، یا کانال چند مسیره که به خاطر انتشار سیگنال از چند مسیر ایجاد میشود نمونه هایی از این کانالها می باشند، لذا امروزه استفاده از تکنیکهای مدولاسیون با خواصی نظیر مقاومت در برابر اختلال، عملکرد در طیف انرژی پایین، دسترسی چندگانه بدون کنترل خارجی ایجاد کانالهای سری بدون امکان شنود خارجی و … به سرعت ر و به افزایش است. یک روش مدولاسیون و دمدولاسیون که می‎تواند در اینگونه موارد مناسب باشد تکنیک طیف گسترده می‎باشد.

60 سال پیش در‌آگوست 1942 هدی لامار جرج آنیل با ثبت سند سیستم مخابرات مخفی در اداره ثبت اختراعات ایالات متحده دریچه ای به فضای دوردست «سیستم های طیف گسترده» گشودند. تکنیکهای طیف گسترده در ابتدا برای اهداف نظامی ایجاد و مورد استفاده قرار گرفتند. اما با پیشرفت های فراوانی که در عرصه VLSI تکنیکهای پیشرفته پردازش سیگنال و ساخت میکروپروسسورهای سریع و ارزان قیمت صورت گرفت امکان توسعه تجهیزات طیف گسترده برای استفاده های شخصی فراهم شد.

ازمشخصات بارز یک سیستم طیف گسترده می‎توان به گسترش طیف سیگنال ارسالی در پهنای باند مستقل و بسیار وسیعتر از باند پیام، حذف گسترش و حصول مجدد طیف توان درگیرنده و بکارگیری یک دنباله شبه تصادفی غیر از دنباله پیام در فرستنده و گیرنده اشاره نمود. دو شرط عمده زیر باعث تمایز سیستم های طیف گسترده باز مدولاسیون های نظیر FM باند وسیع که در آنها نیز از پهنای باند سیگنال پیام استفاده می‎شود شده است .

د ریک سیتم طیف گسترده پهنا باند ارسالی بسیار بزرگتر پهنای باند سیگنال پیام می‎باشد.

گسترش طیف توسط دنباله شبه تصافدی دیگری که از سیگنال پیام مستقل و برای گیرنده کاملاً مشخص است، انجام می‎شود. شکل 1-1 دیاگرام کلی سیستم طیف گسترده را نشان می‎دهد.

دراین دیاگرام منظور از کد گسترش دهنده یک دنباله باینری شبه تصادفی با نرخ بسیار بالاتر از نرخ سیگنال پیام و لذا طیف فرکانسی وسیعی می‎باشد. شکل 2-1 نمونه ای از این دنباله را نشان می دهند.

در فصول بعد این بخش ابتدا به معرفی بیشتر سیستم های طیف گسترده پرداخته انواع ، خصوصیت ها و کاربردهای این سیستم ها را بیان می کنیم.

فصل دوم

سیستم های طیف گسترده

استفاده از سیستم های طیف گسترده باعث بهبود کیفیت انتقال اطلاعات در سیستم های مخابراتی می‎شود. بطور کلی مقدار بهبود کیفیتی را که دراثر استفاده از یک سیستم طیف گسترده بدست می‎آید بهره پردازش می گوییم. بعبارت دیگر آن را می‎توان تفاوت میان عملکرد سیستمی که از طیف گسترده استفاده می‎کند و عملکرد سیستمی که از این تکنیک استفاده نمی کنند، هنگامی که بقیه شرایط برای دو سیستم یکسان باشد تعریف نمود، بنابراین بهره پردازش پارامتری است که با آن می‎توان کیفیت سیستم طیف گسترده را نشان داد. سه رابطه رایج برای بهره پردازش درنظر گرفته شده است.

1- نسبت SNR خروجی به SNR وردی بعد از فیلتر کردن نهایی

(1-2)

2- نسبت پهنای باند سیگنال گسترده شده به نرخ ارسال اطلاعات.

(2-2)

نسبت پهنای باند سیگنال گسترده شده به پهنای باند پیام (مدوله شده)

(3-2)

رابطه اول یک رابطه تئوری کلی است و روابط بعدی را می‎توان به ترتیب برای دو نوع سیستم طیف گسترده FH و DS از آن نتیجه گرفت.

بهره پردازش امروزه درسیستم های طیف گسترده تجاری 10 تا 100 ( Db 20-10) و در سیستم های طیف گسترده نظامی 100 تا 1000000 (Db 60-30) می‎باشد.

1-2- انواع سیستم های طیف گسترده

انواع سیستم های طیف گسترده عبارتند از:

سیستم طیف گسترده دنباله مستقیم یا شبه نویز (DS) / (PN)

سیستم طیف گسترده پرش فرکانسی (FH)

سیستم طیف گسترده پرش زمانی (TH)

سیستم طیف گسترده جاروب فرکانسی (CHIRP)

سیستم طیف گسترده با ترکیب روش های فوق (HYBRID)

در ادامه به بررسی اجمالی انواع سیستم های طیف گسترده می‎پردازیم.

1-1-2- سیستم طیف گسترده دنباله مستقیم یا شبه نویز (DS) / (PN)

شکل 1-2 بلوک دیاگرام یک مدولاتور طیف گسترده DS را نشان می‎دهد.

شکل 1-2: دیاگرام بلوکی فرستنده DS.

دراین روش همانطور که مشاهده می‎شود عمل گسترش طیف با ضرب مستقیم کد گسترش دهنده C(T) در موج مدوله شدن انجام می‎شود. چون کد گسترش دهنده یک دنباله باینری شبه تصادفی با نرخ بسیار بالاتر از نرخ اطلاعات می‎باشد از نظر فرکانسی طیفی با پهنای باند وسیع و شبیه نویز دارد که باعث گسترش طیف سیگنال مدوله شده


دانلود با لینک مستقیم


پژوهشی در مورد سیستمهای طیف گسترده

تحقیق درباره طیف سنجی نشری قوس و جرقه

اختصاصی از سورنا فایل تحقیق درباره طیف سنجی نشری قوس و جرقه دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 33

 

طیف سنجی نشری قوس و جرقه

در منابع قوس و جرقه تقریباً امکان برانگیختن همه عناصر پایدار در جدول تناوبی وجود دارد.

تخلیه قوس و جرقه به عنوان منابع برانگیختگی از دهه 1920 برای طیف سنجی نشری وکیفی و کمی استفاده شده است. بسیاری از پیشرفت های نوین برانگیختگی قوس و جرقه در طی سالهای جنگ، دهه 1940 به ویژه در پروژة منهتان اتفاق افتاد.

در منبع قوس dc ، 70 تا 80 عنصر برانگیخته می شود. کاربرد اصلی قوس، برای تجزیه کیفی و نیمه کمی است، زیرا دقت اندازه گیری های کمی چندان مطلوب نیست. منبع جرقة‌ ولتاژ بالا، پر انرژی تر از قوس است؛ حتی گازهای نادر و هالوژن ها در تخلیه الکتریکی جرقه می‌توانند برانگیخته شوند. دقت جرقه بیشتر از قوس dc است و برای اندازه گیری های کمی برتری دارد.

منابع برانگیختگی قوس

در این بخش مشخصه ها، مزایا و محدودیت های انواع گوناگونی از تخلیه های قوس نظیر قوس dc ، قوس ac ، قوس با اتمسفر کنترل شده و قوس پایدار شده با گاز مورد توجه قرار می‌گیرند.

قوس که در تجزیه طیف شیمیایی به کار می رود، تخلیه دی الکتریکی بین دو یا چند الکترود هدایت کننده است. یکی از الکترودها ،‌حاوی پودر نمونه، مخلوط جامد یا پس ماندة محلول است. شدت نشر در کل زمان قوس زنی که سوزاندن نامیده می شود، به صورت فوتوگرافیکی یا الکترونیکی انتگرال گیری می شود. قوس می تواند در هوا یا اتمسفری از گاز بی اثر آزادسوز باشد، یا به وسیله گاز پایدار شود. قوس های آزادسوز بیشتر برای تجزیه های طیف شیمیایی به کار گرفته می شوند. سه نوع قوس مورد استفاده قرار می گیرد: قوس dc ، قوس ac و قوس نوبتی یا تک جهتی.

قوس های dc آزاد سوز

معمولی ترین نوع قوس بکار گرفته شده در تجزیه طیف شیمیایی قوس dc است؛ که بطور مرسوم با آشکارپذیری و دقت کم مشخص می شود. گر چه در تخلیة قوس، یونش اساساً وجود دارد اما خطوط نشری اتم های خنثی برتری دارند. در واقع خطوط اتم خنثی، اغلب خطوط قوس نامیده می شوند؛ یا به عنوان خطوط نوع (I) در نامگذاری طیف بینی خوانده می شوند. بنابراین خط آرگون (I) ، خط آرگون خنثی است.

قوس dc از تخلیه پیوسته 1 تا 30 آمپری بین یک جفت الکترود فلزی یا گرافیتی حاصل میشود. دیاگرام ساده شدة مدار الکتریکی در شکل 9-1 نشان داده شده است.

قوس بیشتر مقاومت منفی از خود نشان می دهد، چون افزایش جریان قوس منجر به افت ولتاژ در گاف و کاهش در مقاومت قوس خواهد شد.

با افزایش یافتن رسانایی قوس، جریان باید بدون محدودیت افزایش یابد. کنترل صحیح جریان به سوزاندن یکنواخت کمک می کند و شدت های نشر تکرارپذیری ایجاد می‌شود. برای تنظیم بهتر جریان ولتاژ اعمال شده باید بزرگتر از افت ولتاژی باشد که در دو سر قوس اتفاق می افتد.

معمولی ترین ماده الکترود، گرافیت است. گرچه گاهگاهی خود نمونه های فلزی به شکل مناسب درآورده شده و به عنوان الکترود استفاده می شوند. گرافیت ارزان و باخلوص بالا در دسترس است، همچنین در برابر حملة بیشتر واکنش گرها مقاوم و نیز ماده ای دیرگداز است.

اغلب نمونه هایی که باید تجزیه شوند جامدند، پودرها، تراشه ها و براده های متداول‌اند. به طور کلی نمونه ها با تبخیر از الکترود فنجانی شکل (الکترود پایینی ) که شبیه یکی از الکترودهایی است که در تصویر 9-3 نشان داده شده اند وارد قوس می شوند.

برای ایجاد قوس یا الکترودها لحظه ای به هم برخورد می کنند یا مولد جرقه ای با جریان الکتریکی پایین امکان یونش اولیه را مهیا می سازد. با یونش گرمایی مواد موجود در گاف‌ و تأمین الکترونها و یونها از الکترودها ، قوس برقرار می شود.

در آمریکا، معمولا در قوس، الکترود نمونه به عنوان آند و الکترود مخالف به عنوان کاتد عمل می کند. نمونه برداری کاتدی بیشتر در اروپا استفاده می شود. با نمونه برداری آندی، میدان رو به بالا بر مواد یونیده اثر می گذارد. فقط غلظت نسبتاً پایینی از مواد یونیده در ستون قوس وجود دارد و بخار کمی به وسیله نفوذ جانبی خارج می شود. در برانگیختگی کاتدی، بخارات یونیده در معرض نیروهای رو به پایین در ستون قرار می گیرند. نتیجة این امر غلظت پایین در ستون و انباشتگی ذرات فلزی در کاتد است، که به لایة کاتدی معروف است. گاهی برانگیختگی کاتدی برای کاهش حد آشکارسازی مطلق استفاده می شود که به دلیل افزایش نشر در لایة کاتدی است. با این حال، نشر زمینة شدیدی نیز در ناحیه لایه کاتدی یافته می شود و نسبتهای علامت به زمینه ممکن است بهتر از نمونه برداری آندی، نباشد. در قوس های آزادسوز، زمان گذار به اندازه‌ی ‌چند میلی ثانیه است.

به طور معمول دمای قوس در محدودة 3000 تا k 8000 است و تقریباً به طور خطی به پتانسیل یونش ماده، در ناحیه گاف بستگی دارد. در جریان ثابت به دلیل اتلاف انرژی، دمای قوس با مقاومت پلاسمای قوس متناسب خواهد بود. با موادی که به راحتی یونیده می‌شوند، چگالی الکترون درگاف زیاد است، بنابراین مقاومت بین الکترودها کم و در نتیجه دما پایین است. به طور مشابه،‌موادی با پتانسیل یونش بالا ، منجر به دمای بالا می شوند. وابستگی دمای قوس به ماهیت نمونه، کاملا نامطلوب است و اغلب به اثرات ماتریس جدی منجر می شود. همچنین دمای قوس به طور قابل توجهی در جهت محوری تغییر می کند. درنواحی افت آندی و کاتدی دمای بالاتری نسبت به خود ستون قوس یافت می شود. در جهت شعاعی،‌دما در کانال جریان به حداکثر می رسد و با افزایش فاصله، به سرعت کاهش می‌یابد. دمای پایین در نواحی خارجی قوس باعث می شود چگالی اتمها در حالت پایه زیاد شود،‌این امر اغلب به مشکلات جدی خودجذبی و خود بازگشتی منجر می شود، زیرا تابش نشری در کانال با دمای بالا،‌ باید قبل از رسیدن به گاف ورودی طیف سنج، از میان حاشیه قوس عبور کند.

تبخیر گزینشی

ویژگی دیگر تخلیه قوس dc است زیرا الکترودها به کندی به وسیله قوس گرم می شوند. بنابراین ابتدا فرارترین مواد و به دنبال آن مواد با نقطه جوش بالاتر تبخیر می شوند، شکل 9-4.


دانلود با لینک مستقیم


تحقیق درباره طیف سنجی نشری قوس و جرقه

الگوریتم همزمانی یک سیستم طیف گسترده پرش فرکانسی تجاری

اختصاصی از سورنا فایل الگوریتم همزمانی یک سیستم طیف گسترده پرش فرکانسی تجاری دانلود با لینک مستقیم و پر سرعت .

الگوریتم همزمانی یک سیستم طیف گسترده پرش فرکانسی تجاری


الگوریتم همزمانی یک سیستم طیف گسترده پرش فرکانسی تجاری

روش طیف گسترده پرش فرکانسی (Spread Spectrum Frequency Hopping)  که به اختصار FHSS نامیده می شود، یکی از انواع روش­های مدولاسیون طیف گسترده است که به دلیل امنیت بالای آن در برابر استراق سمع و همچنین مقاوم بودن در برابر اختلال و تداخل­ها، در کاربردهای مخابراتی بسیار مورد توجه بوده است. یکی از کلیدی ترین و مهمترین قسمتهای سیستم های پرش فرکانسی، بخش همزمانی (synchronization)  است که در گیرنده قرار دارد. در این گزارش، بخش همزمانی یک سیستم طیف گسترده پرش فرکانسی وفقی (adaptive frequency hopping) که به اختصار AFH نامیده می شود بیان خواهد شد. این سیستم، سیستم معروف و پرکاربرد بلوتوث می باشد. در ادامه، قسمت ابتدایی گزارش بعنوان نمونه کار قرار داده شده است تا خواننده محترم با کلیت گزارش آشنا گردد:

 

 

 

" در سیستم بلوتوث، در دو فاز همزمان‌سازی و برقراری اتصال انجام می شود. در اولین مرحله که به استعلام[1] معروف است، یک دستگاه روشن شده و شروع به گشتن دستگاه های اطراف می کند. بسته داده ID1 که دارای 68 بیت با همبستگی خوب است با نرخ پرش فرکانسی 3200hop/s ارسال می‌گردد. آشکارسازی در گیرنده با گرفتن همبستگی انجام می‌پذیرد. در حالت استعلام، 32 فرکانس برای پرش وجود دارد و فرستنده در تمامی این فرکانس‌ها ID1 را ارسال می کند و بنابراین گیرنده کافی است در یکی از این فرکانس ها این بسته را دریافت کند. فرستنده لااقل 256*2 بار برروی این 32 کانال استعلام ، ID1 را ارسال می کند. طول زمانی 32 پرش فرکانسی، 10ms است و بنابراین  5.12s لااقل فرستنده استعلام را انجام می دهد. از طرفی هم ابزار پایش استعلام[2] نیز 11.25ms، یعنی به مدت 36 پرش، پایش[3] را انجام می دهد که یعنی حداقل یک بار ID1 از فرستنده را می تواند دریافت کند (اصل لانه کبوتری!).

در گیرنده یا ابزار پایش استعلام، زمانی که این بسته دریافت شد، پس از مدتی، منتظر ID2 فرستنده می شود و گیرنده وارد حالت پاسخ به استعلام[4] می شود. پس از دریافت ID2، گیرنده بلافاصله بسته (FHS[5]) را ارسال می کند.

 

 

======================

ادامه گزارش را می توانید از لینک زیر دانلود نمایید:

این فایل در قالب word و در 9  صفحه تنظیم شده است.


[1] inquiry  

[2] inquiry scan device

[3] Scanning

[4] inquiry response state

[5] FH synchronization


دانلود با لینک مستقیم


الگوریتم همزمانی یک سیستم طیف گسترده پرش فرکانسی تجاری

تحقیق درمورد اصول طیف سنجی جرمی (اسپکترومتری جرمی )

اختصاصی از سورنا فایل تحقیق درمورد اصول طیف سنجی جرمی (اسپکترومتری جرمی ) دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

 

دفتر تالیف

otherweblog&site

جمشیدی دبیر شیمی

قطار شیمی

آموزش شیمی

هوپا

OLC آموزش زبان

دانشنامه رشد جوان

شیمی یایه دو

کامپیوتر

پیش دانشگاهی امیدی

در باره شیمی

شیمی آزاد

شیمی

رقص پروانه ها

خانه شیمی

ریاضی شعر...

آموزش شیمی درایران...

 

/

/

کلاس شیمی

/

اسپکترومتری جرمی

/

 

اصول طیف سنجی جرمی (اسپکترومتری جرمی )

یک ذره باردارمتحرک باسرعتی یکنواخت درخلا ء تحت تاثیر یک میدان مغناطیسی نیرویی تحمل می کند که سبب تغییر مسیرش می شود.انحراف ذره ازمسیراولیه بستگی به جرم وبارالکتریکی ذره دارد.اگر سرعت ذره باردارتحت تاثیر یک میدان الکتریکی به اختلاف پتانسیل V تشدید شده باشد انرژی جنبشی ذره دراثراین میدان عبارت است از       (1 )     mv2 /2  =V.e 

 که دراین رابطه  e و m و v   به ترتیب بار وجرم وسرعت ذره می باشد.طیف نگارجرمی یون هارابرحسب مقادیر m/e  ازیکدیگر جدا می کند. در حضور یک میدان مغناطیسی ، یک ذره باردار مسیر منحنی شکلی را خواهد داشت. معادله‌ای که شعاع این مسیر منحنی شکل را نشان می‌دهد به صورت زیراست    :                                                 ( 2)       r = mv / eH

که r شعاع انحنای مسیر و H شدت میدان مغناطیسی است.   باحذف v ازبین دومعادله فوق٬ معادله اساسی اسپکترومتری های جرم ساده را بدست می دهد.          m / e = H2R2 / 2V      

این معادله نشان می دهد که شعاع مسیریون٬ می تواند در اثر تغییر  H ویا V تغییر نماید. معمولا H  را متغیر انتخاب می نمایند.

رفتار و عمل یک یون را در بخش تجزیه‌گر جرمی یک طیف سنج جرمی توسط این معادله می توان توجیه نمود .      

             

اصول عملیات

دراسپکترومتری جرمی موادی که توسط کروماتوگرافی گاز جداسازی شده اند  شناسایی واندازه گیری می گردند .به این  صورت که٬  گازهای خارج شده ازستون مویینه ( GC ) یکی یکی مستقیما واردمخزن یونش  دستگاه طیف سنج جرمی می شوند . درقسمت هایی از دستگاه چون مخزن یون و جمع کننده و ....بوسیله پمپ ٬ خلاء ایجاد می کنند.وقتی که دستگاه طیف سنج جرمی کار می کند .جریان یکنواختی از بخار مولکول ها از روزنه مولکولی به محفظه یونش وارد می شوند و توسط جریانی از الکترون های پرانرژی بمباران شده وتبدیل به یون های مثبت می گردند.  در محفظه یونش الکترون های پرانرژی دارای انرژی معادل 70 میکرون - ولت هستند. و از یک "سیم باریک"  که تا چند هزار درجه سلسیوس گرم ‌شده است٬ ساطع می‌شوند. یک "صفحه دافع" که پتانسیل الکتریکی مثبت کمی دارد، یونهای مثبت  را به طرف "صفحات شتاب دهنده" هدایت می‌کند. مولکول های نمونه که یونیزه نشده اند.  بطور مداوم توسط مکنده‌ها یا پمپهای خلا٬ که به محفظه یونش متصل هستند، خارج می شوند. بعضی از این مولکولها از طریق جذب الکترون به یونهای منفی تبدیل می‌شوند. این یونهای منفی توسط صفحات دافع جذب می‌گردند.

 ممکن است که بخش کوچکی از یونهای تشکیل شده بیش از یک بار داشته باشند، (از دست دادن بیش از یک الکترون) اینها مانند یونهای مثبت تک ظرفیتی ، شتاب داده می‌شوند.

پرتوی یون های مثبت در یک میدان الکتریکی باقدرت چندین هزار ولت شتاب داده می‌شوند. درنتیجه  این عمل ، پرتویی از یونهای مثبت سریع تولید می شود. این یونها توسط یک یا چند "شکاف متمرکز کننده"  یکنواخت ومتمرکز می‌شوند.اگر ولتاژاین میدان ثابت نگهداشته شود٬ تمام یون هایی که m/e  مساوی دارند   ٬ باسرعت یکسان وارد یک میدان مغناطیسی می شوند.و بسته به نسبت بار/جرم  جدا می‌گردند.

اگر شدت میدان  ( ‌ H) رابه میزان ثابتی افزایش ویا کاهش دهند نیروی اعمال شده بوسیله میدان مغناطیسی افزایش ویاکاهش می یابد وپرتوهای جداشده هریک به نوبت ازشکاف عبورنموده وبه صفحه آشکارکننده برخوردمی کنند .

آشکار کننده بخش دیگر دستگاه است .که  در اثر برخورد یونها به آن ، هریون مثبت باگرفتن یک الکترون ٬ تولید جریان درمدار می کند . سیگنال تولید شده از آشکار کننده به یک ثبات داده می‌شود که یونهای دارای نسبت بار/جرم مشخص و معین را٬ شمارش و آشکارمی گرداند.ونموداری از طیف جرمی ، تعداد ذرات آشکار شده بر حسب تابعی از نسبت بار/جرم را رسم می کند .  می‌توان آن قدر دقیق این جریان را تنظیم نمود. که جریان حاصل از برخورد حتی یک یون به آشکار کننده اندازه ‌گیری شود.

 در دستگاههای جدید ، خروجی آشکار کننده  به رایانه متصل است. رایانه  اطلاعات  را به هر دو صورت جدولی و گرافیکی ذخیره می کند. درپایان داده‌ها با طیف های استاندارد ذخیره شده موجود در رایانه مقایسه می‌گردد.ومولکول جداسازی شده شناسایی می شود.  با کلیک دراینجامی توانیدمراحل فوق الذکر را مشاهده کنید.

+ نوشته شده در  چهارشنبه نهم آذر 1384ساعت 17:59  توسط هوشمند  |  6 نظر

/

/

/

 

/

/

حشمت السادات هوشمنددبیر بازنشسته شیمی بهشهر هستم. مدرک کارشناسی شیمی راازدانشگاه فردوسی مشهد درسال 1355 گرفتم بعلت دبیران خوب شیمی که دردوران تحصیل داشتم علاقمند به این رشته شدم بیشتر سال های خدمتم درسال های چهارم وپیش دانشگاهی بوده ، علاوه برتدریس دردبیرستان های دخترانه ، مدرس مرکز تربیت معلم دختران و مدرس دوره های ضمن خدمت فرهنگیان استان مازندران نیز بوده ام .چون می خواستم ارتباط خودرا با همکاران ودانشجویان و دانش آموزان وعلاقمندان به این رشته حفظ کنم شروع به نوشتن وبلاگ نمودم .هدفم این است بازبانی ساده مطالب شیمی را به طور خلاصه ارائه کنم . وامیدوارم که مفید واقع شود .استفاده از مطالب این وبلاگ با ذکر منبع بلامانع است.


دانلود با لینک مستقیم


تحقیق درمورد اصول طیف سنجی جرمی (اسپکترومتری جرمی )

طیف سنج جرمی 8ص

اختصاصی از سورنا فایل طیف سنج جرمی 8ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

طیف سنج جرمی

اصول طیف سنجی جرمی ، جلوتر از هر یک از تکنیکهای دستگاهی دیگر ، بنا نهاده شده است. تاریخ پایه گذاری اصول اساسی آن به سال 1898 بر می‌گردد. در سال 1911 ، "تامسون" برای تشریح وجود نئون-22 در نمونه‌ای از نئون-20 از طیف جرمی استفاده نمود و ثابت کرد که عناصر می‌توانند ایزوتوپ داشته باشند.

تاریخچه

اصول طیف سنجی جرمی ، جلوتر از هر یک از تکنیکهای دستگاهی دیگر ، بنا نهاده شده است. تاریخ پایه گذاری اصول اساسی آن به سال 1898 بر می‌گردد. در سال 1911 ، "تامسون" برای تشریح وجود نئون-22 در نمونه‌ای از نئون-20 از طیف جرمی استفاده نمود و ثابت کرد که عناصر می‌توانند ایزوتوپ داشته باشند. تا جایی که می‌دانیم، قدیمیترین طیف سنج جرمی در سال 1918 ساخته شد.

اما روش طیف سنجی جرمی تا همین اواخر که دستگاههای دقیق ارزانی در دسترس قرار گرفتند، هنوز مورد استفاده چندانی نداشت. این تکنیک با پیدایش دستگاههای تجاری که بسادگی تعمیر و نگهداری می‌شوند و با توجه به مناسب بودن قیمت آنها برای بیشتر آزمایشگاههای صنعتی و آموزشی و نیز بالا بودن قدرت تجزیه و تفکیک ، در مطالعه تعیین ساختمان ترکیبات از اهمیت بسیاری برخوردار گشته است.

اصول طیف سنجی جرمی

به بیان ساده ، طیف سنج جرمی سه عمل اساسی را انجام می‌دهد:

مولکولها توسط جرایاناتی از الکترونهای پرانرژی بمباران شده و بعضی از مولکولها به یونهای مربوطه تبدیل می‌گردند. سپس یونها در یک میدان الکتریکی شتاب داده می‌شوند.

یونهای شتاب داده شده بسته به نسبت بار/جرم آنها در یک میدان مغناطیسی یا الکتریکی جدا می‌گردند.

یونهای دارای نسبت بار/جرم مشخص و معین توسط بخشی از دستگاه که در اثر برخورد یونها به آن ، قادر به شمارش آنها است، آشکار می‌گردند. نتایج داده شده خروجی توسط آشکار کننده بزرگ شده و به ثبات داده می‌شوند. علامت یا نقشی که از ثبات حاصل می‌گردد یک طیف جرمی است، نموداری از تعداد ذرات آشکار شده بر حسب تابعی از نسبت بار/جرم.

دستگاه طیف سنج جرمی

هنگامی که هر یک از عملیات را بدقت مورد بررسی قرار دهیم، خواهیم دید که طیف سنج جرمی واقعا پیچیده‌تر از آن چیزی است که در بالا شرح داده شد.

سیستم ورودی نمونه

قبل از تشکیل یونها باید راهی پیدا کرد تا بتوان جریانی از مولکولها را به محفظه یونیزاسیون که عمل یونیزه شدن در آن انجام می‌گیرد، روانه ساخت. یک سیستم ورودی نمونه برای ایجاد چنین جریانی از مولکولها بکار برده می‌شود. نمونه‌هایی که با طیف سنجی جرمی مورد مطالعه قرار می‌گیرند، می‌توانند به حالت گاز ، مایع یا جامد باشند. در این روش باید از وسایلی استفاده کرد تا مقدار کافی از نمونه را به حالت بخار در آورده ، سپس جریانی از مولکولها روانه محفظه یونیزاسیون شوند.

در مورد گازها ، ماده ، خود به حالت بخار وجود دارد. پس ، از سیستم ورودی ساده‌ای می‌توان استفاده کرد. این سیستم تحت خلاء بوده، بطوری که محفظه یونیزاسیون در فشاری پایینتر از سیستم ورودی نمونه قرار دارد.

روزنه مولکولی

نمونه به انبار بزرگتری رفته که از آن ، مولکولهای بخار به محفظه یونیزاسیون می‌روند. برای اطمینان از اینکه جریان یکنواختی از مولکولها به محفظه یونیزاسیون وارد می‌شود، قبل از ورود ، بخار از میان سوراخ کوچکی که "روزنه مولکولی" خوانده می‌شود، عبور می‌کند. همین سیستم برای مایعات و جامدات فرار نیز بکار برده می‌شود. برای مواد با فراریت کم ، می‌توان سیستم را به گونه‌ای طراحی کرد که در یک اجاق یا تنور قرار گیرد تا در اثر گرم کردن نمونه ، فشار بخار بیشتری حاصل گردد. باید مراقب بود که حرارت زیاد باعث تخریب ماده نگردد.

در مورد مواد جامد نسبتا غیر فرار ، روش مستقیمی را می‌توان بکار برد. نمونه در نوک میله‌ای قرار داده می‌شود و سپس از یک شیر خلاء ، وارد محفظه یونیزاسیون می‌گردد. نمونه در فاصله بسیار نزدیکی از پرتو یونیزه کننده الکترونها قرار می‌گیرد. سپس آن میله ، گرم شده و تولید بخاری از نمونه را کرده تا در مجاورت پرتو الکترونها بیرون رانده شوند. چنین سیستمی را می‌توان برای مطالعه نمونه‌ای از مولکولهایی که فشار بخار آنها در درجه حرارت اتاق کمتر از 9 - 10 میلیمتر جیوه است، بکار برد.

محفظه یونیزاسیون

هنگامی که جریان مولکولهای نمونه وارد محفظه یونیزاسیون گشت ، توسط پرتوی از الکترونهای پرانرژی بمباران می‌شود. در این فرآیند ، مولکولها به یونهای مربوطه تبدیل گشته و سپس در یک میدان الکتریکی شتاب داده می‌شوند. در محفظه یونیزاسیون پرتو الکترونهای پرانرژی از یک "سیم باریک" گرم شده ساطع می‌شوند. این سیم باریک تا چند هزار درجه سلسیوس گرم می‌شود. به هنگام کار در شرایطی معمولی ، الکترونها دارای انرژی معادل 70 میکرون - ولت هستند.

این الکترونهای پرانرژی با مولکولهایی که از سیستم نمونه وارد شده‌اند، برخورد کرده و با برداشتن الکترون از آن مولکولها ، آنها را یونیزه کرده و به یونهای مثبت تبدیل می‌کنند. یک "صفحه دافع" که پتانسیل الکتریکی مثبتی دارد، یونهای جدید را به طرف دسته‌ای از "صفحات شتاب دهنده" هدایت می‌کند. اختلاف پتانسیل زیادی (حدود 1 تا 10 کیلو ولت) از این صفحات شتاب دهنده عبور داده می‌شود که این عمل ، پرتوی از یونهای مثبت سریع را تولید می‌کند. این یونها توسط یک یا چند "شکاف متمرکز کننده" به طرف یک پرتو یکنواخت هدایت می‌شوند.

بسیاری از مولکولهای نمونه به هیچ وجه یونیزه نمی‌شوند. این مولکولها بطور مداوم توسط مکنده‌ها یا


دانلود با لینک مستقیم


طیف سنج جرمی 8ص